Skip to main content
Log in

In differentiating prefusion myoblasts connexin43 gap junction coupling is upregulated before myoblast alignment then reduced in post-mitotic cells

  • Original paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Previously we have shown that during in vivo muscle regeneration differentiating rat primary myoblasts transiently upregulate connexin43 (Cx43) gap junctions and leave cell cycle synchronously. Here, we studied the temporal regulation of Cx expression in relation to functional dye coupling in allogenic primary myoblast cultures using western blotting, immuno-confocal microscopy and dye transfer assays. As in vivo, Cx43 was the only Cx isotype out of Cx26, 32, 37, 40, 43 and 45 found in cultured rat myoblasts by immunostaining. Cultured myoblasts showed similar temporal regulation of Cx43 expression and phenotypic maturation to those regenerating in vivo. Cx43 protein was progressively upregulated in prefusion myoblasts, first by the cytoplasmic assembly in sparse myoblast meshworks and then in cell membrane particles in aligned cells. Dye injection using either Lucifer Yellow alone, Cascade Blue with a non-junction permeant FITC-dextran revealed an extensive gap junction coupling between the sparse interacting myoblasts and a reduced communication between the aligned, but still prefused cells. The aligned myoblasts, uniformly upregulate p21waf1/cip1 and p27kip1 cell cycle control proteins. Taken together, in prefusion myoblasts less membrane-bound Cx43 was found to mediate substantially more efficient dye coupling in the growing cell fraction than those in the aligned post-mitotic myoblasts. These and our in vivo results in early muscle differentiation are consistent with the role of Cx43 gap junctions in synchronizing cell cycle control of myoblasts to make them competent for a coordinated syncytial fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albright CD, Kuo J, Jeong S (2001) cAMP enhances Cx43 gap junction formation and function and reverses choline deficiency apoptosis. Exp Mol Pathol 71:34–39

    Article  PubMed  CAS  Google Scholar 

  • Araya R, Eckhardt D, Maxiener S, Kruger O, Theiss M, Willecke K, Saez JC (2005) Expression of connexins during differentiation and regeneration of skeletal muscle: functional relevance of connexin43. J Cell Sci 118:27–37

    Article  PubMed  CAS  Google Scholar 

  • Armstrong DL, Turin L, Warner AE (1983) Muscle activity and the loss of electrical coupling between striated muscle cells in Xenopus embryos. J Neurosci 3:1414–1421

    PubMed  CAS  Google Scholar 

  • Azzam EI, de Toledo SM, Little JB (2001) Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from alpha-particle irradiated to non-irradiated cells. Proc Natl Acad Sci USA 98:473–478

    Article  PubMed  CAS  Google Scholar 

  • Baek HJ, Jeon YJ, Kim HS, Kang MS, Chung CH, Ha DB (1994) Cyclic AMP negatively modulates both Ca2+/calmodulin-dependent phosphorylation of the 100-kDa protein and membrane fusion of chick embryonic myoblasts. Dev Biol 165:178–184

    Article  PubMed  CAS  Google Scholar 

  • Balogh S, Naus CC, Merrifield PA (1993) Expression of gap junctions in cultured rat L6 cells during myogenesis. Dev Biol 155:351–360

    Article  PubMed  CAS  Google Scholar 

  • Becker DL, Evans WH, Green CR, Warner A (1995) Functional analysis of amino acid sequences in connexin43 involved in intercellular communication through gap junctions. J Cell Sci 108:1455–1467

    PubMed  CAS  Google Scholar 

  • Becker DL, McGonnell I, Makarenkova HP, Patel K, Tickle C, Lorimer J, Green CR (1999) Roles for alpha 1 connexin in morphogenesis of chick embryos revealed using a novel antisense approach. Dev Genet 24:33–42

    Article  PubMed  CAS  Google Scholar 

  • Berthoud VM, Singh R, Minogue PJ, Ragsdale CW, Beyer EC (2004) Highly restricted pattern of connexin36 expression in chick somite development. Anat Embryol (Berl) 209:11–18

    Article  CAS  Google Scholar 

  • Beyer EC (1990) Molecular cloning and developmental expression of two chick embryo gap junction proteins. J Biol Chem 265:14439–14443

    PubMed  CAS  Google Scholar 

  • Bischoff R (1990) Cell cycle commitment of rat muscle satellite cells. J Cell Biol 111:201–207

    Article  PubMed  CAS  Google Scholar 

  • Boitano S, Dirksen ER, Evans WH (1998) Sequence-specific antibodies to connexins block intercellular calcium signaling through gap junctions. Cell Calcium 23:1–9

    Article  PubMed  CAS  Google Scholar 

  • Clairmount A, Sies H (1997) Evidence for posttranscriptional effect of retinoic acid on connexin43 gene expression via the 3′-untranslated region. FEBS Lett 419:268–270

    Article  PubMed  Google Scholar 

  • Constantin B, Cronier L (2000) Involvement of gap junctional communication in myogenesis. Int Rev Cytol 196:1–65

    PubMed  CAS  Google Scholar 

  • Constantin B, Cronier L, Raymond G (1997) Transient involvement of gap junctional communication before fusion of newborn rat myoblasts. C R Acad Sci III 320:35–40

    PubMed  CAS  Google Scholar 

  • Coppen S, Dupont E, Rothery S, Severs N (1998) Connexin45 expression is preferentially associated with the ventricular conduction system in mouse and rat heart. Circ Res 82:232–243

    PubMed  CAS  Google Scholar 

  • Dahl E, Winterhager E, Traub O, Willecke K (1995) Expression of gap junction genes, connexin40 and connexin43, during fetal mouse development. Anat Embryol (Berl) 191:267–278

    CAS  Google Scholar 

  • David JD, See WM, Higginbotham CA (1981) Fusion of chick embryo skeletal myoblasts: role of calcium influx preceding membrane union. Dev Biol 82:297–307

    Article  PubMed  CAS  Google Scholar 

  • David JD, Faser CR, Perrot GP (1990) Role of protein kinase C in chick embryo skeletal myoblast fusion. Dev Biol 139:89–99

    Article  PubMed  CAS  Google Scholar 

  • Darrow BJ, Fast VG, Kleber AG, Beyer EC, Saffitz JE (1996) Functional and structural assessment of intercellular communication. Increased conduction velocity and enhanced connexin expression in dibutyryl cAMP-treated cultured cardiac myocytes. Circ Res 79:174–183

    PubMed  CAS  Google Scholar 

  • Farnazeh F, Entwistle A, Zalin RJ (1989) Protein kinase C mediates the hormonally regulated plasma membrane fusion of avian embryonic skeletal muscle. Exp Cell Res 181:298–304

    Article  PubMed  Google Scholar 

  • Gorbe A, Dux L, Krenacs T (2000) Direct cell–cell communication through gap junctions in the regenerating skeletal muscle. J Physiol (Lond) 256(Suppl S):22–23

    Google Scholar 

  • Gorbe A, Becker DL, Dux L, Stelkovics E, Krenacs L, Bagdi L, Krenacs T (2005) Transient upregulation of connexin43 gap junctions and synchronized cell cycle control precede myoblast fusion in regenerating skeletal muscle in vivo. Histochem Cell Biol 123:573–583

    Article  PubMed  CAS  Google Scholar 

  • Goodenough DA, Paul DL (2003) Beyond the gap: functions of unpaired connexin channels. Nat Rev Mol Cell Biol 4:285–294

    Article  PubMed  CAS  Google Scholar 

  • Grounds MD (1999) Muscle regeneration: molecular aspects and therapeutic implications. Curr Opin Neurol 12:535–543

    Article  PubMed  CAS  Google Scholar 

  • Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551

    PubMed  CAS  Google Scholar 

  • Kalderon N, Epstein ML, Gilula NB (1977) Cell-to-cell communication and myogenesis. J Cell Biol 75:788–806

    Article  PubMed  CAS  Google Scholar 

  • Keresztes M, Haggblad J, Heilbronn E (1991) Basal and ATP-stimulated phosphoinositol metabolism in fusing rat skeletal muscle cells in culture. Exp Cell Res 196:362–364

    Article  PubMed  CAS  Google Scholar 

  • Kitzmann M, Fernandez A (2001) Crosstalk between cell cycle regulators and the myogenic factor MyoD in skeletal myoblasts. Cell Mol Life Sci 58:571–579

    Article  PubMed  CAS  Google Scholar 

  • Koffler L, Roshong S, Park KI, Cesen-Cummings K, Thompson DC, Dwyer-Nield LD, Rice P, Mamay C, Malkinson AM, Ruch RJ (2000) Growth inhibition in G1 and altered expression of cyclin D1 and p27 kip1 after forced connexin expression in lung and liver carcinoma cells. J Cell Biochem 79:347–354

    Article  PubMed  CAS  Google Scholar 

  • Krenacs T, van Dartel M, Lindhout E, Rosendaal M (1997) Direct cell/cell communication in the lymphoid germinal center: connexin43 gap junctions functionally couple follicular dendritic cells to each other and to B lymphocytes. Eur J Immunol 27:1489–1497

    Article  PubMed  CAS  Google Scholar 

  • Kumar NM, Gilula NB (1996) The gap junction communication channel. Cell 84:381–388

    Article  PubMed  CAS  Google Scholar 

  • Lampe PD, TenBroek EM, Burt JM, Kurata WE, Johnson RG (2000) Phosphorylation of connexin43 on serine368 by protein kinase C regulates gap junctional communication. J Cell Biol 149:1503–1512

    Article  PubMed  CAS  Google Scholar 

  • Lefaucheur JP, Sebille A (1995) The cellular events of injured muscle regeneration depend on the nature of the injury. Neuromuscul Disord 5:501–509

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough HJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • von Maltzahn J, Euwens C, Willecke K, Sohl G (2004) The novel mouse connexin 39 gene is expressed in developing striated muscle fibers. J Cell Sci 117:5381–5392

    Article  PubMed  CAS  Google Scholar 

  • Marchal S, Cassar-Malek I, Magaud JP, Rouault JP, Wrutniak C, Cabello G (1995) Stimulation of avian myoblast differentiation by triiodothyronine: possible involvement of the cAMP pathway. Exp Cell Res 220:1–10

    Article  PubMed  CAS  Google Scholar 

  • Mege RM, Goudou D, Giaume C, Nicolet M, Rieger F (1994) Is intercellular communication via gap junctions required for myoblast fusion? Cell Adhes Commun 2:329–343

    Article  PubMed  CAS  Google Scholar 

  • Milks LC, Kumar NM, Houghten R, Unwin N, Gilula NB (1988) Topology of the 32-kd liver gap junction protein determined by site-directed antibody localization. EMBO J 7:2967–2975

    PubMed  CAS  Google Scholar 

  • Miner JH, Wold B (1990) Herculin, a fourth member of the MyoD family of myogenic regulatory factors. Proc Natl Acad Sci USA 87:1089–1093

    Article  PubMed  CAS  Google Scholar 

  • Ostrovsky O, Bengal E (2003) The mitogen-activated protein kinase cascade promotes myoblast cell survival by stabilizing the cyclin-dependent kinase inhibitor, p21WAF1 protein. J Biol Chem 278:21221–21231

    Article  PubMed  CAS  Google Scholar 

  • Proulx A, Merrifield PA, Naus CC (1997) Blocking gap junctional intercellular communication in myoblasts inhibits myogenin and MRF4 expression. Dev Genet 20:133–144

    Article  PubMed  CAS  Google Scholar 

  • Rando TA, Blau HM (1994) Primary mouse myoblast purification, characterization and transplantation for cell-mediated gene therapy. J Cell Biol 125:1275–1287

    Article  PubMed  CAS  Google Scholar 

  • Rash JE, Fambrough D (1973) Ultrastructural and electrophysiological correlates of cell coupling and cytoplasmic fusion during myogenesis in vitro. Dev Biol 30:166–186

    Article  PubMed  CAS  Google Scholar 

  • Rhodes SJ, Konieczky SF (1989) Identification of MRF4: a new member of the muscle regulatory factor gene family. Genes Dev 3:2050–2061

    Article  PubMed  CAS  Google Scholar 

  • Rudnicki MA, Schnegelsberg PN, Stead RH, Braun T, Arnold HH, Jaenisch R (1993) MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75:1351–1359

    Article  PubMed  CAS  Google Scholar 

  • Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer E (2003) Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev 83:1359–1400

    PubMed  CAS  Google Scholar 

  • Schmalbruch H (1982) Skeletal muscle fibers of newborn rats are coupled by gap junctions. Dev Biol 91:485–490

    Article  PubMed  CAS  Google Scholar 

  • Shin YJ, Woo JH, Chung CH, Kim HS (2000) Retinoic acid and its geometrical isomers block both growth and fusion of L6 myoblasts by modulating the expression of protein kinase A. Mol Cells 10:162–168

    Article  PubMed  CAS  Google Scholar 

  • Sohl G, Willecke K (2004) Gap junctions and the connexin protein family. Cardiovasc Res 62:228–232

    Article  PubMed  CAS  Google Scholar 

  • Stout C, Goodenough DA, Paul DL (2004) Connexins: functions without junctions. Cur Opin Cell Biol 16:507–512

    Article  CAS  Google Scholar 

  • Yeh HI, Dupont E, Coppen S, Rothery S, Severs N (1997) Gap junction localization and connexin expression in cytochemically identified endothelial cells of arterial tissue. J Histochem Cytochem 45:539–550

    PubMed  CAS  Google Scholar 

  • Yeh HI, Rothery S, Dupont E, Coppen S, Severs N (1998) Individual gap junction plaques contain multiple connexins in arterial endothelium. Circ Res 83:1248–1263

    PubMed  CAS  Google Scholar 

  • Willecke K, Eiberger J, Degen J, Eckardt D, Romualdi A, Guldenagel M, Deutsch U, Sohl G (2002) Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem 383:725–737

    Article  PubMed  CAS  Google Scholar 

  • Wright WE, Sassoon DA, Lin VK (1989) Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell 56:607–617

    Article  PubMed  CAS  Google Scholar 

  • Wright CS, Becker DL, Lin JS, Warner AE, Hardy K (2001) Stage-specific and differential expression of gap junctions in the mouse ovary: connexin-specific roles of follicular regulation. Reproduction 121:77–88

    Article  PubMed  CAS  Google Scholar 

  • Zalin RJ, Montague W (1974) Changes in adenylate cyclase, cyclic AMP, and protein kinase levels in chick myoblasts, and their relationship to differentiation. Cell 2:103–108

    Article  PubMed  CAS  Google Scholar 

  • Zhang J-T, Nicholson BJ (1989) Sequence and tissue distribution of a second protein of hepatic gap junctions, Cx26, as deduced from its cDNA. J Cell Biol 109:3391–3401

    Article  PubMed  CAS  Google Scholar 

  • Zhang YW, Morita I, Ikeda M, Ma KW, Murota S (2001) Connexin43 suppresses proliferation of osteosarcoma U2OS cells through post-transcriptional regulation of p27. Oncogene 20:4138–4149

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to professors Howard Evans (University of Wales, Cardiff) and Nicholas Severs (National Heat and Lung Institute, London) Robert Gourdie (MUSC) for sharing their connexin specific antibodies. Mr. Daniel Ciantar (UCL), Mrs. Elizabet Balazshazi (Department of Biochemistry, Szeged), Aniko Sarro, and Katalin Danyi (Bay Zoltán Foundation, Szeged) for their skilful technical assistance. This study was supported by grants from The Royal Society in the UK (15109), and by OTKA T32928, ETT 42102/2003 and RET 08/2004 in Hungary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Krenacs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorbe, A., Becker, D.L., Dux, L. et al. In differentiating prefusion myoblasts connexin43 gap junction coupling is upregulated before myoblast alignment then reduced in post-mitotic cells. Histochem Cell Biol 125, 705–716 (2006). https://doi.org/10.1007/s00418-005-0121-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-005-0121-x

Keywords

Navigation