Skip to main content
Log in

Activation of Rac-1 and Cdc42 stabilizes the microvascular endothelial barrier

  • Original paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

We have demonstrated previously that the Rho family GTPase Rac-1 is required for maintenance of endothelial barrier functions in mouse microvascular myocardial endothelial (MyEnd) cells in vitro as well as in rat mesenteric microvessels in vivo. In this study, we tested the hypothesis that specific activation of Rac-1 would stabilize microvascular endothelial barrier functions. For this purpose we used Escherichia coli Cytotoxic necrotizing factor (CNF-1) under conditions (300 ng/ml, 120 min) where it strongly activated Rac-1 and Cdc42 but not Rho A in MyEnd cells. Under these conditions, CNF-1 induced translocation of the actin-binding proteins cortactin and vasodilator-stimulated phosphoprotein (VASP) to cell junctions, increased the junction-associated actin filament belt, and reduced monolayer permeability. We also tested the effect of CNF-1 on endothelial barrier properties in vivo using single-perfused mesenteric microvessels. In contrast to cultured microvascular monolayers, CNF-1 did not reduce baseline barrier functions assayed as hydraulic conductivity (Lp). However, following 120 min pretreatment, CNF-1 significantly attenuated the peak Lp increase in response to platelet-activating factor (PAF, 10 nM) to 12.6±4×10−7 cm/(s cmH2O) compared to 46.2±10×10−7 cm/(s cmH2O) in experiments using PAF alone. These experiments indicate that activation of Rac-1 and Cdc42 stabilizes microvascular endothelial barrier functions in vitro and in vivo, likely by increasing the junction-associated actin cytoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamson RH, Liu B, Fry GN, Rubin LL, Curry FE (1998) Microvascular permeability and number of tight junctions are modulated by cAMP. Am J Physiol 274:H1885–H1894

    PubMed  CAS  Google Scholar 

  • Adamson RH, Curry FE, Adamson G, Liu B, Jiang Y, Aktories K, Barth H, Daigeler A, Golenhofen N, Ness W, Drenckhahn D (2002) Rho and rho kinase modulation of barrier properties: cultured endothelial cells and intact microvessels of rats and mice. J Physiol 539:295–308

    Article  PubMed  CAS  Google Scholar 

  • Adamson RH, Zeng M, Adamson GN, Lenz JF, Curry FE (2003) PAF- and bradykinin-induced hyperpermeability of rat venules is independent of actin-myosin contraction. Am J Physiol Heart Circ Physiol 285:H406–H417

    PubMed  CAS  Google Scholar 

  • Adamson RH JY, Lenz JF, Curry FE (2001) Basal hydraulic conductivity regulation in single perfused rat venules by cAMP. Faseb J 15(4):A44

    Google Scholar 

  • Bamburg JR, Wiggan OP (2002) ADF/cofilin and actin dynamics in disease. Trends Cell Biol 12:598–605

    Article  PubMed  CAS  Google Scholar 

  • Barth H, Olenik C, Sehr P, Schmidt G, Aktories K, Meyer DK (1999) Neosynthesis and activation of Rho by Escherichia coli cytotoxic necrotizing factor (CNF1) reverse cytopathic effects of ADP-ribosylated Rho. J Biol Chem 274:27407–27414

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner W, Hinterdorfer P, Ness W, Raab A, Vestweber D, Schindler H, Drenckhahn D (2000) Cadherin interaction probed by atomic force microscopy. Proc Natl Acad Sci USA 97:4005–4010

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner W, Schutz GJ, Wiegand J, Golenhofen N, Drenckhahn D (2003) Cadherin function probed by laser tweezer and single molecule fluorescence in vascular endothelial cells. J Cell Sci 116:1001–1011

    Article  PubMed  CAS  Google Scholar 

  • Boquet P, Lemichez E (2003) Bacterial virulence factors targeting Rho GTPases: parasitism or symbiosis? Trends Cell Biol 13:238–246

    Article  PubMed  CAS  Google Scholar 

  • Doye A, Mettouchi A, Bossis G, Clement R, Buisson-Touati C, Flatau G, Gagnoux L, Piechaczyk M, Boquet P, Lemichez E (2002) CNF1 exploits the ubiquitin-proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion. Cell 111:553–564

    Article  PubMed  CAS  Google Scholar 

  • Flatau G, Lemichez E, Gauthier M, Chardin P, Paris S, Fiorentini C, Boquet P (1997) Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature 387:729–733

    Article  PubMed  CAS  Google Scholar 

  • Förster C, Silwedel C, Golenhofen N, Burek M, Kietz S, Mankertz J, Drenckhahn D (2005) Occludin as direct target for glucocorticoid-induced improvement of blood-brain barrier properties in a murine in vitro system. J Physiol 565:475–486

    Article  PubMed  Google Scholar 

  • Garcia JG, Liu F, Verin AD, Birukova A, Dechert MA, Gerthoffer WT, Bamberg JR, English D (2001) Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement. J Clin Invest 108:689–701

    Article  PubMed  CAS  Google Scholar 

  • Golenhofen N, Ness W, Wawrousek EF, Drenckhahn D (2002) Expression and induction of the stress protein alpha-B-crystallin in vascular endothelial cells. Histochem Cell Biol 117:203–209

    Article  PubMed  CAS  Google Scholar 

  • Gotsch U, Borges E, Bosse R, Boggemeyer E, Simon M, Mossmann H, Vestweber D (1997) VE-cadherin antibody accelerates neutrophil recruitment in vivo. J Cell Sci 110:583–588

    PubMed  CAS  Google Scholar 

  • Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    Article  PubMed  CAS  Google Scholar 

  • Hall A, Nobes CD (2000) Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton. Philos Trans R Soc Lond B Biol Sci 355:965–970

    Article  PubMed  CAS  Google Scholar 

  • Huxley VH, Rumbaut RE (2000) The microvasculature as a dynamic regulator of volume and solute exchange. Clin Exp Pharmacol Physiol 27:847–854

    Article  PubMed  CAS  Google Scholar 

  • Kouklis P, Konstantoulaki M, Vogel S, Broman M, Malik AB (2004) Cdc42 regulates the restoration of endothelial barrier function. Circ Res 94:159–166

    Article  PubMed  CAS  Google Scholar 

  • Lerm M, Pop M, Fritz G, Aktories K, Schmidt G (2002) Proteasomal degradation of cytotoxic necrotizing factor 1-activated Rac. Infect Immun 70:4053–4058

    Article  PubMed  CAS  Google Scholar 

  • McVerry BJ, Garcia JG (2005) In vitro and in vivo modulation of vascular barrier integrity by sphingosine 1-phosphate: mechanistic insights. Cell Signal 17:131–139

    Article  PubMed  CAS  Google Scholar 

  • Michel CC, Mason JC, Curry FE, Tooke JE, Hunter PJ (1974) A development of the Landis technique for measuring the filtration coefficient of individual capillaries in the frog mesentery. Q J Exp Physiol Cogn Med Sci 59:283–309

    PubMed  CAS  Google Scholar 

  • Michel CC, Curry FE (1999) Microvascular permeability. Physiol Rev 79:703–761

    PubMed  CAS  Google Scholar 

  • Minnear FL, Zhu L, He P (2005) Sphingosine 1-phosphate prevents platelet-activating factor-induced increase in hydraulic conductivity in rat mesenteric venules: pertussis toxin sensitive. Am J Physiol Heart Circ Physiol 289:H840–H844

    Article  PubMed  CAS  Google Scholar 

  • Quinlan MP (2004) Vinculin, VASP, and profilin are coordinately regulated during actin remodeling in epithelial cells, which requires de novo protein synthesis and protein kinase signal transduction pathways. J Cell Physiol 200:277–290

    Article  PubMed  CAS  Google Scholar 

  • Schmidt G, Sehr P, Wilm M, Selzer J, Mann M, Aktories K (1997) Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1. Nature 387:725–729

    Article  PubMed  CAS  Google Scholar 

  • Schmidt G, Selzer J, Lerm M, Aktories K (1998) The Rho-deamidating cytotoxic necrotizing factor 1 from Escherichia coli possesses transglutaminase activity. Cysteine 866 and histidine 881 are essential for enzyme activity. J Biol Chem 273:13669–13674

    Article  PubMed  CAS  Google Scholar 

  • Schnittler HJ, Franke RP, Akbay U, Mrowietz C, Drenckhahn D (1993) Improved in vitro rheological system for studying the effect of fluid shear stress on cultured cells. Am J Physiol 265:C289–C298

    PubMed  CAS  Google Scholar 

  • Vestweber D (2000) Molecular mechanisms that control endothelial cell contacts. J Pathol 190:281–291

    Article  PubMed  CAS  Google Scholar 

  • Vouret-Craviari V, Grall D, Flatau G, Pouyssegur J, Boquet P, Van Obberghen-Schilling E (1999) Effects of cytotoxic necrotizing factor 1 and lethal toxin on actin cytoskeleton and VE-cadherin localization in human endothelial cell monolayers. Infect Immun 67:3002–3008

    PubMed  CAS  Google Scholar 

  • Vouret-Craviari V, Bourcier C, Boulter E, van Obberghen-Schilling E (2002) Distinct signals via Rho GTPases and Src drive shape changes by thrombin and sphingosine-1-phosphate in endothelial cells. J Cell Sci 115:2475–2484

    PubMed  CAS  Google Scholar 

  • Waeber C, Blondeau N, Salomone S (2004) Vascular sphingosine-1-phosphate S1P1 and S1P3 receptors. Drug News Perspect 17:365–382

    Article  PubMed  CAS  Google Scholar 

  • Waschke J, Baumgartner W, Adamson RH, Zeng M, Aktories K, Barth H, Wilde C, Curry FE, Drenckhahn D (2004a) Requirement of Rac activity for maintenance of capillary endothelial barrier properties. Am J Physiol Heart Circ Physiol 286:H394–H401

    Article  PubMed  CAS  Google Scholar 

  • Waschke J, Drenckhahn D, Adamson RH, Barth H, Curry FE (2004b) cAMP protects endothelial barrier functions by preventing Rac-1 inhibition. Am J Physiol Heart Circ Physiol 287:H2427–H2433

    Article  PubMed  CAS  Google Scholar 

  • Waschke J, Drenckhahn D, Adamson RH, Curry FE (2004c) Role of adhesion and contraction in Rac 1-regulated endothelial barrier function in vivo and in vitro. Am J Physiol Heart Circ Physiol 287:H704–H711

    Article  PubMed  CAS  Google Scholar 

  • Weed SA, Du Y, Parsons JT (1998) Translocation of cortactin to the cell periphery is mediated by the small GTPase Rac1. J Cell Sci 111(Pt 16):2433–2443

    PubMed  CAS  Google Scholar 

  • Wojciak-Stothard B, Potempa S, Eichholtz T, Ridley AJ (2001) Rho and Rac but not Cdc42 regulate endothelial cell permeability. J Cell Sci 114:1343–1355

    PubMed  CAS  Google Scholar 

  • Wojciak-Stothard B, Ridley AJ (2002) Rho GTPases and the regulation of endothelial permeability. Vascul Pharmacol 39:187–199

    Article  PubMed  CAS  Google Scholar 

  • Wojciak-Stothard B, Tsang LY, Haworth SG (2005) Rac and Rho play opposing roles in the regulation of hypoxia/reoxygenation-induced permeability changes in pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 288:L749–L760

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Gabriele Königer and Joyce Lenz for skilful technical assistance. We thank U. Walter (Institute for Clinical Biochemistry and Pathobiochemistry, University of Würzburg) for supplying the VASP antiserum and G. Schmidt (Department of Pharmacology and Toxicology, University of Freiburg) for generously supplying CNF-1 toxin. These studies were supported in part by grants from the National Heart, Lung, and Blood Institute (HL44485 and HL28607), a grant from the Deutsche Forschungsgemeinschaft (SFB 487, TP B5) and the IZKF Würzburg (TP E23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Waschke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waschke, J., Burger, S., Curry, FR.E. et al. Activation of Rac-1 and Cdc42 stabilizes the microvascular endothelial barrier. Histochem Cell Biol 125, 397–406 (2006). https://doi.org/10.1007/s00418-005-0080-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-005-0080-2

Keywords

Navigation