Nucleolus: from structure to dynamics

Abstract

The nucleolus, a large nuclear domain, is the ribosome factory of the cells. Ribosomal RNAs are synthesized, processed and assembled with ribosomal proteins in the nucleolus, and the ribosome subunits are then transported to the cytoplasm. In this review, the structural organization of the nucleolus and the dynamics of the nucleolar proteins are discussed in an attempt to link both information. By electron microscopy, three main nucleolar components corresponding to different steps of ribosome biogenesis are identified and the nucleolar organization reflects its activity. Time-lapse videomicroscopy and fluorescent recovery after photobleaching (FRAP) demonstrate that mobility of GFP-tagged nucleolar proteins is slower in the nucleolus than in the nucleoplasm. Fluorescent recovery rates change with inhibition of transcription, decreased temperature and depletion of ATP, indicating that recovery is correlated with cell activity. At the exit of mitosis, the nucleolar processing machinery is first concentrated in prenucleolar bodies (PNBs). The dynamics of the PNBs suggests a steady state favoring residence of processing factors that are then released in a control- and time-dependent manner. Time-lapse analysis of fluorescence resonance energy transfer demonstrates that processing complexes are formed in PNBs. Finally, the nucleolus appears at the center of several trafficking pathways in the nucleus.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Andersen JS, Lam YW, Leung AK, Ong SE, Lyon CE, Lamond AI, Mann M (2005) Nucleolar proteome dynamics. Nature 433:77–83

    PubMed  Article  CAS  Google Scholar 

  2. Angelier N, Tramier M, Louvet E, Coppey-Moisan M, Savino TM, De Mey JR, Hernandez-Verdun DD (2005) Tracking the interactions of rRNA processing proteins during nucleolar assembly in living cells. Mol Biol Cell 16:2862–2871

    PubMed  Article  CAS  Google Scholar 

  3. Azum-Gélade M-C, Noaillac-Depeyre J, Caizergues-Ferrer M, Gas N (1994) Cell cycle redistribution of U3 snRNA and fibrillarin. Presence in the cytoplasmic nucleolus remnant and in the prenucleolar bodies at telophase. J Cell Sci 107:463–475

    PubMed  Google Scholar 

  4. Bell P, Dabauvalle MC, Scheer U (1992) In vitro assembly of prenucleolar bodies in Xenopus egg extract. J Cell Biol 118:1297–1304

    PubMed  Article  CAS  Google Scholar 

  5. Bertrand E, Houser-Scott F, Kendall A, Singer RH, Engelke DR (1998) Nucleolar localization of early tRNA processing. Genes Dev 12:2463–2468

    PubMed  CAS  Google Scholar 

  6. Biggiogera M, Fakan S, Kaufmann SH, Black A, Shaper JH, Busch H (1989) Simultaneous immunoelectron microscopic visualization of protein B23 and C23 distribution in the HeLa cell nucleolus. J Histochem Cytochem 37:1371–1374

    PubMed  CAS  Google Scholar 

  7. Boulon S, Verheggen C, Jady BE, Girard C, Pescia C, Paul C, Ospina JK, Kiss T, Matera AG, Bordonne R, Bertrand E (2004) PHAX and CRM1 are required sequentially to transport U3 snoRNA to nucleoli. Mol Cell 16:777–787

    PubMed  Article  CAS  Google Scholar 

  8. Bubulya PA, Prasanth KV, Deerinck TJ, Gerlich D, Beaudouin J, Ellisman MH, Ellenberg J, Spector DL (2004) Hypophosphorylated SR splicing factors transiently localize around active nucleolar organizing regions in telophase daughter nuclei. J Cell Biol 167:51–63

    PubMed  Article  CAS  Google Scholar 

  9. Carmo-Fonseca M, Mendes-Soares L, Campos I (2000) To be or not to be in the nucleolus. Nat Cell Biol 2:107–112

    Article  Google Scholar 

  10. Carmo-Fonseca M, Platani M, Swedlow JR (2002) Macromolecular mobility inside the cell nucleus. Trends Cell Biol 12:491–495

    PubMed  Article  CAS  Google Scholar 

  11. Chan PK, Qi Y, Amley J, Koller CA (1996) Quantitation of the nucleophosmin/B23-translocation using imaging analysis. Cancer Lett 100:191–197

    PubMed  Article  CAS  Google Scholar 

  12. Chen D, Huang S (2001) Nucleolar components involved in ribosome biogenesis cycle between the nucleolus and nucleoplasm in interphase cells. J Cell Biol 153:169–176

    PubMed  Article  CAS  Google Scholar 

  13. Clute P, Pines J (1999) Temporal and spatial control of cyclin B1 destruction in metaphase. Nat cell Biol 1:82–87

    PubMed  Article  CAS  Google Scholar 

  14. Cmarko D, Verschure PJ, Rothblum LI, Hernandez-Verdun D, Amalric F, van Driel R, Fakan S (2000) Ultrastructural analysis of nucleolar transcription in cells microinjected with 5-bromo-UTP. Histochem Cell Biol 113:181–187

    PubMed  Article  CAS  Google Scholar 

  15. Cockell MM, Gasser SM (1999) The nucleolus: nucleolar space for rent. Curr Biol 9:R575–R576

    PubMed  Article  CAS  Google Scholar 

  16. Colau G, Thiry M, Leduc V, Bordonne R, Lafontaine DL (2004) The small nucle(ol)ar RNA cap trimethyltransferase is required for ribosome synthesis and intact nucleolar morphology. Mol Cell Biol 24:7976–7986

    PubMed  Article  CAS  Google Scholar 

  17. David-Pfeuty T, Nouvian-Dooghe Y, Sirri V, Roussel P, Hernandez-Verdun D (2001) Common and reversible regulation of wild-type p53 function and of ribosomal biogenesis by protein kinases in human cells. Oncogene 20:5951–5963

    PubMed  Article  CAS  Google Scholar 

  18. Dousset T, Wang C, Verheggen C, Chen D, Hernandez-Verdun D, Huang S (2000) Initiation of nucleolar assembly is independent of RNA polmerase I transcription. Mol Biol Cell 11:2705–2717

    PubMed  CAS  Google Scholar 

  19. Dundr M, Olson MOJ (1998) Partially processed pre-rRNA is preserved in association with processing components in nucleolus derived foci during mitosis. Mol Biol Cell 9:2407–2422

    PubMed  CAS  Google Scholar 

  20. Dundr M, Misteli T, Olson MOJ (2000) The dynamics of postmitotic reassembly of the nucleolus. J Cell Biol 150:433–446

    PubMed  Article  CAS  Google Scholar 

  21. Dundr M, Hoffmann-Rohrer U, Hu Q, Grummt I, Rothblum LI, Phair RD, Misteli T (2002) A kinetic framework for a mammalian RNA polymerase in vivo. Science 298:1623–1626

    PubMed  Article  CAS  Google Scholar 

  22. Dundr M, Hebert MD, Karpova TS, Stanek D, Xu H, Shpargel KB, Meier UT, Neugebauer KM, Matera AG, Misteli T (2004) In vivo kinetics of Cajal body components. J Cell Biol 164:831–842

    PubMed  Article  CAS  Google Scholar 

  23. Emiliani V, Sanvitto D, Tramier M, Piolot T, Petrasek Z, Kemnitz K, Durieux C, Coppey-Moisan M (2003) Low-intensity two-dimensional imaging of fluorescence lifetimes in living cells. Appl Phys Lett 83:2471–2473

    Article  CAS  Google Scholar 

  24. Fatica A, Tollervey D (2002) Making ribosomes. Curr Opin Cell Biol 14:313–318

    PubMed  Article  CAS  Google Scholar 

  25. Finch RA, Chan PK (1996) ATP depletion affects NPM translocation and exportation of rRNA from nuclei. Biochem Biophys Res Commun 222:553–558

    PubMed  Article  CAS  Google Scholar 

  26. Finch RA, Revankar GR, Chan PK (1993) Nucleolar localization of nucleophosmin/B23 requires GTP. J Biol Chem 268:5823–5827

    PubMed  CAS  Google Scholar 

  27. Fomproix N, Gébrane-Younès J, Hernandez-Verdun D (1998) Effects of anti-fibrillarin antibodies on building of functional nucleoli at the end of mitosis. J Cell Sci 111:359–372

    PubMed  CAS  Google Scholar 

  28. Fromont-Racine M, Senger B, Saveanu C, Fasiolo F (2003) Ribosome assembly in eukaryotes. Gene 313:17–42

    PubMed  Article  CAS  Google Scholar 

  29. Gall JG (2000) Cajal bodies: the first 100 years. Annu Rev Cell Dev Biol 16:273–300

    PubMed  Article  CAS  Google Scholar 

  30. Ganot P, Jady BE, Bortolin M-L, Darzacq X, Kiss T (1999) Nucleolar factors direct the 2′-O-ribose methylation and pseudouridylation of U6 spliceosomal RNA. Mol Cell Biol 19:6906–6917

    PubMed  CAS  Google Scholar 

  31. Gautier T, Dauphin-Villemant C, André C, Masson C, Arnoult J, Hernandez-Verdun D (1992a) Identification and characterization of a new set of nucleolar ribonucleoproteins which line the chromosomes during mitosis. Exp Cell Res 200:5–15

    PubMed  Article  CAS  Google Scholar 

  32. Gautier T, Masson C, Quintana C, Arnoult J, Hernandez-Verdun D (1992b) The ultrastructure of the chromosome periphery in human cells. An in situ study using cryomethods in electron microscopy. Chromosoma 101:502–510

    PubMed  Article  CAS  Google Scholar 

  33. Gautier T, Robert-Nicoud M, Guilly M-N, Hernandez-Verdun D (1992c) Relocation of nucleolar proteins around chromosomes at mitosis—a study by confocal laser scanning microscopy. J Cell Sci 102:729–737

    PubMed  CAS  Google Scholar 

  34. Gautier T, Fomproix N, Masson C, Azum-Gélade MC, Gas N, Hernandez-Verdun D (1994) Fate of specific nucleolar perichromosomal proteins during mitosis: cellular distribution and association with U3 snoRNA. Biol Cell 82:81–93

    PubMed  Article  CAS  Google Scholar 

  35. Gébrane-Younès J, Sirri V, Junéra HR, Roussel P, Hernandez-Verdun D (2005) Nucleolus: an essential nuclear domain. In: Diekmann PHaS (ed) Visions of the cell nucleus. ASP, CA, pp 120–135

    Google Scholar 

  36. Ginisty H, Amalric F, Bouvet P (1998) Nucleolin functions in the first step of ribosomal RNA processing. EMBO J 17:1476–1486

    PubMed  Article  CAS  Google Scholar 

  37. Granick D (1975) Nucleolar necklaces in chick embryo fibroblast cells. II. Microscope observations of the effect of adenosine analogues on nucleolar necklace formation. J Cell Biol 65:418–427

    PubMed  Article  CAS  Google Scholar 

  38. Guarente L (2000) Sir2 links chromatin silencing, metabolism, and aging. Genes Dev 14:1021–1026

    PubMed  CAS  Google Scholar 

  39. Guillot PV, Martin S, Pombo A (2005) The organization of transcription in the nucleus of mammalian cells. In: Diekmann PHaS (eds) Visions of the cell nucleus. ASP, CA, pp 95–105

    Google Scholar 

  40. Haaf T, Ward DC (1996) Inhibition of RNA polymerase II transcription causes chromatin decondensation, loss of nucleolar structure, and dispersion of chromosomal domains. Exp Cell Res 224:163–173

    PubMed  Article  CAS  Google Scholar 

  41. Haaf T, Hayman DL, Schmid M (1991) Quantitative determination of rDNA transcription units in vertebrate cells. Exp Cell Res 193:78–86

    PubMed  Article  CAS  Google Scholar 

  42. Hadjiolov AA (1985) The nucleolus and ribosome biogenesis. Springer, Berlin Heidelberg New York, pp 1–268

    Google Scholar 

  43. Hadjiolova KV, Hadjiolov A, Bachelerie J-P (1995) Actinomycin D stimulates the transcription of rRNA minigenes transfected into mouse cells. Applications for the in vivo hypersensitivity of rRNA gene transcription. Eur J Biochem 228:605–615

    PubMed  Article  CAS  Google Scholar 

  44. Heix J, Vente A, Voit R, Budde A, Michaelidis TM, Grummt I (1998) Mitotic silencing of human rRNA synthesis: inactivation of the promoter selectivity factor SL1 by cdc2/cyclin B-mediated phosphorylation. EMBO J 17:7373–7381

    PubMed  Article  CAS  Google Scholar 

  45. Hernandez-Verdun D (2004) Behavior of the nucleolus during mitosis. Kluwer Academic, Dordrecht, pp 41–57

    Google Scholar 

  46. Hernandez-Verdun D, Junéra HR (1995) The nucleolus. In: Principles of medical biology, cellular organels, vol 2. Jai Press, Greenwich, pp 73–92

  47. Hozak P, Novak JT, Smetana K (1989) Three-dimensional reconstructions of nucleolus-organizing regions in PHA-stimulated human lymphocytes. Biol Cell 66:225–233

    PubMed  Article  CAS  Google Scholar 

  48. Hozàk P, Cook PR, Schöfer C, Mosgöller W, Wachtler F (1994) Site of transcription of ribosomal RNA and intranucleolar structure in HeLa cells. J Cell Sci 107:639–648

    PubMed  Google Scholar 

  49. Isaac C, Yang Y, Meier T (1998) Nopp140 functions as a molecular link between the nucleolus and the coiled bodies. J Cell Biol 142:319–329

    PubMed  Article  CAS  Google Scholar 

  50. Janicki SM, Spector DL (2003) Nuclear choreography: interpretations from living cells. Curr Opin Cell Biol 15:149–157

    PubMed  Article  CAS  Google Scholar 

  51. Jarrous N, Wolenski D, Wesolowski D, Lee C, Altman S (1999) Localization in the nucleolus and coiled bodies of protein subunits of the ribonucleoprotein ribonuclease P. J Cell Biol 146:559–571

    PubMed  Article  CAS  Google Scholar 

  52. Jiménez-Garcia LF, Segura-Valdez MdL, Ochs RL, Rothblum LI, Hannan R, Spector DL (1994) Nucleologenesis: U3 snRNA-containing prenucleolar bodies move to sites of active pre-rRNA transcription after mitosis. Mol Biol Cell 5:955–966

    PubMed  Google Scholar 

  53. Junéra HR, Masson C, Géraud G, Hernandez-Verdun D (1995) The three-dimensional organization of ribosomal genes and the architecture of the nucleoli vary with G1, S and G2 phases. J Cell Sci 108:3427–3441

    PubMed  Google Scholar 

  54. Junéra HR, Masson C, Géraud G, Suja J, Hernandez-Verdun D (1997) Involvement of in situ conformation of ribosomal genes and selective distribution of UBF in rRNA transcription. Mol Biol Cell 8:145–156

    PubMed  Google Scholar 

  55. Le Panse S, Masson C, Héliot L, Chassery J-M, Junéra HR, Hernandez-Verdun D (1999) 3-D organization of single ribosomal transcription units after DRB inhibition of RNA polymerase II transcription. J Cell Sci 112:2145–2154

    CAS  Google Scholar 

  56. Lippincott-Schwartz J, Snapp E, Kenworthy A (2001) Studying protein dynamics in living cells. Nat Rev Mol Cell Biol 2:444–456

    PubMed  Article  CAS  Google Scholar 

  57. Louvet E, Junera HR, Le Panse S, Hernandez-Verdun D (2005) Dynamics and compartmentation of the nucleolar processing machinery. Exp Cell Res 304:457–470

    PubMed  Article  CAS  Google Scholar 

  58. Matera AG (1999) Nuclear bodies: multifaceted subdomains of the interchromatin space. Trends Cell Biol 9:302–309

    PubMed  Article  CAS  Google Scholar 

  59. Mélèse T, Xue Z (1995) The nucleolus: an organelle formed by the act of building a ribosome. Curr Opin Cell Biol 7:319–324

    PubMed  Article  Google Scholar 

  60. Misteli T (2001) Protein dynamics: implications for nuclear architecture and gene expression. Science 291:843–847

    PubMed  Article  CAS  Google Scholar 

  61. Ochs RL, Lischwe MA, Shen E, Caroll RE, Busch H (1985a) Nucleologenesis: composition and fate of prenucleolar bodies. Chromosoma 92:330–336

    PubMed  Article  CAS  Google Scholar 

  62. Ochs RL, Lischwe MA, Spohn WH, Busch H (1985b) Fibrillarin: a new protein of the nucleolus identified by autoimmune sera. Biol Cell 54:123–134

    PubMed  CAS  Google Scholar 

  63. Okuwaki M, Tsujimoto M, Nagata K (2002) The RNA binding activity of a ribosome biogenesis factor, nucleophosmin/B23, is modulated by phosphorylation with a cell cycle-dependent kinase and by association with its subtype. Mol Biol Cell 13:2016–2030

    PubMed  Article  CAS  Google Scholar 

  64. Olson MO, Dundr M (2005) The moving parts of the nucleolus. Histochem Cell Biol 123:203–216

    PubMed  Article  CAS  Google Scholar 

  65. Olson MOJ, Dundr M, Szebeni A (2000) The nucleolus: an old factory with unexpected capabilities. Trends Cell Biol 10:189–196

    PubMed  Article  CAS  Google Scholar 

  66. Pébusque MJ, Seïte (1981) Electron microscopic studies of silver-stained proteins in nucleolar organizer regions: location in nucleoli of rat sympathetic neurons during light and dark periods. J Cell Sci 51:85–94

    PubMed  Google Scholar 

  67. Pederson T (1998) The plurifunctional nucleolus. Nucleic Acids Res 26:3871–3876

    PubMed  Article  CAS  Google Scholar 

  68. Pena E, Berciano MT, Fernandez R, Ojeda JL, Lafarga M (2001) Neuronal body size correlates with the number of nucleoli and Cajal bodies, and with the organization of the splicing machinery in rat trigeminal ganglion neurons. J Comp Neurol 430:250–263

    PubMed  Article  CAS  Google Scholar 

  69. Phair RD, Misteli T (2000) High mobility of proteins in the mammalian cell nucleus. Nature 404:604–609

    PubMed  Article  CAS  Google Scholar 

  70. Pinol-Roma S (1999) Association of nonribosomal nucleolar proteins in ribonucleoprotein complexes during interphase and mitosis. Mol Biol Cell 10:77–90

    PubMed  CAS  Google Scholar 

  71. Platani M, Golberg I, Swedlow JR, Lamond AI (2000) In vivo analysis of Cajal body movement, separation, and joining in live human cells. J Cell Biol 151:1561–1574

    PubMed  Article  CAS  Google Scholar 

  72. Politz JC, Yarovoi S, Kilroy SM, Gowda K, Zwieb C, Pederson T (2000) Signal recognition particle components in the nucleolus. Proc Natl Acad Sci USA 97:55–60

    PubMed  Article  CAS  Google Scholar 

  73. Politz JC, Lewandowski LB, Pederson T (2002) Signal recognition particle RNA localization within the nucleolus differs from the classical sites of ribosome synthesis. J Cell Biol 159:411–418

    PubMed  Article  CAS  Google Scholar 

  74. Puvion-Dutilleul F, Bachellerie J-P, Puvion E (1991) Nucleolar organization of HeLa cells as studied by in situ hybridization. Chromosoma 100:395–409

    PubMed  Article  CAS  Google Scholar 

  75. Puvion-Dutilleul F, Puvion E, Bachellerie J-P (1997) Early stages of pre-rRNA formation within the nucleolar ultrastructure of mouse cells studied by in situ hybridization with 5′ETS leader probe. Chromosoma 105:496–505

    PubMed  CAS  Google Scholar 

  76. Roix J, Misteli T (2002) Genomes, proteomes, and dynamic networks in the cell nucleus. Histochem Cell Biol 118:105–116

    PubMed  CAS  Google Scholar 

  77. Roussel P, André C, Comai L, Hernandez-Verdun D (1996) The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J Cell Biol 133:235–246

    PubMed  Article  CAS  Google Scholar 

  78. Rubbi CP, Milner J (2003) Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J 22:6068–6077

    PubMed  Article  CAS  Google Scholar 

  79. Savino TM, Bastos R, Jansen E, Hernandez-Verdun D (1999) The nucleolar antigen Nop52, the human homologue of the yeast ribosomal RNA processing RRP1, is recruited at late stages of nucleologenesis. J Cell Sci 112:1889–1900

    PubMed  CAS  Google Scholar 

  80. Savino TM, Gébrane-Younès J, De Mey J, Sibarita J-B, Hernandez-Verdun D (2001) Nucleolar assembly of the rRNA processing machinery in living cells. J Cell Biol 153:1097–1110

    PubMed  Article  CAS  Google Scholar 

  81. Scheer U, Benavente R (1990) Functional and dynamic aspects of the mammalian nucleolus. Bioessays 12:14–21

    PubMed  Article  CAS  Google Scholar 

  82. Scheer U, Hock R (1999) Structure and function of the nucleolus. Curr Opin Cell Biol 11:385–390

    PubMed  Article  CAS  Google Scholar 

  83. Scheer U, Rose KM (1984) Localisation of RNA polymerase I in interphase cells and mitotic chromosomes by light and electron microscopic immunocytochemistry. Proc Natl Acad Sci USA 81:1431–1435

    PubMed  Article  CAS  Google Scholar 

  84. Scheer U, Thiry M, Goessens G (1993) Structure, function and assembly of the nucleolus. Trends Cell Biol 3:236–241

    PubMed  Article  CAS  Google Scholar 

  85. Schul W, de Jong L, van Driel R (1998) Nuclear neighbours: the spatial and functional organization of genes and nuclear domains. J Cell Biochem 70:159–171

    PubMed  Article  CAS  Google Scholar 

  86. Shav-Tal Y, Blechman J, Darzacq X, Montagna C, Dye BT, Patton JG, Singer RH, Zipori D (2005) Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. Mol Biol Cell 16:2395–2413

    PubMed  Article  CAS  Google Scholar 

  87. Shaw PJ, Jordan EG (1995) The nucleolus. Annu Rev Cell Dev Biol 11:93–121

    PubMed  Article  CAS  Google Scholar 

  88. Sirri V, Roussel P, Hernandez-Verdun D (2000) In vivo release of mitotic silencing of ribosomal gene transcription does not give rise to precursor ribosomal RNA processing. J Cell Biol 148:259–270

    PubMed  Article  CAS  Google Scholar 

  89. Sirri V, Hernandez-Verdun D, Roussel P (2002) Cyclin-dependent kinases govern formation and maintenance of the nucleolus. J Cell Biol 156:969–981

    PubMed  Article  CAS  Google Scholar 

  90. Sleeman JE, Lamond AI (1999) Newly assembled snRNPs associated with coiled bodies before speckles, suggesting a nuclear snRNP maturation pathway. Curr Biol 9:1065–1074

    PubMed  Article  CAS  Google Scholar 

  91. Snaar S, Wiesmeijer K, Jochemsen AG, Tanke HJ, Dirks RW (2000) Mutational analysis of fibrillarin and its mobility in living human cells. J Cell Biol 151:653–662

    PubMed  Article  CAS  Google Scholar 

  92. Sollner-Webb B, Tycowski KT, Steitz JA (1996) Ribosomal RNA processing in eukaryotes. In: Ribosomal RNA: structure, evolution, processing, and function in protein biosynthesis. CRC Press, New York, pp 469–490

  93. Spector DL (2001) Nuclear domains. J Cell Sci 114:2891–2893

    PubMed  CAS  Google Scholar 

  94. Strouboulis J, Wolffe AP (1996) Functional compartmentalization of the nucleus. J Cell Sci 109:1991–2000

    PubMed  CAS  Google Scholar 

  95. Thiry M, Goessens G (1996) The nucleolus during the cell cycle. Springer, Berlin Heidelberg New York, p 146

    Google Scholar 

  96. Thiry M, Lafontaine DL (2005) Birth of a nucleolus: the evolution of nucleolar compartments. Trends Cell Biol 15:194–199

    PubMed  Article  CAS  Google Scholar 

  97. Tollervey D (1996) Transacting factors in ribosome synthesis. Exp Cell Res 229:226–232

    PubMed  Article  CAS  Google Scholar 

  98. Tsai RY, McKay RD (2005) A multistep, GTP-driven mechanism controlling the dynamic cycling of nucleostemin. J Cell Biol 168:179–184

    PubMed  Article  CAS  Google Scholar 

  99. Verheggen C, Le Panse S, Almouzni G, Hernandez-Verdun D (1998) Presence of pre-rRNAs before activation of polymerase I transcription in the building process of nucleoli during early development of Xenopus laevis. J Cell Biol 142:1167–1180

    PubMed  Article  CAS  Google Scholar 

  100. Visitin R, Amon A (2000) The nucleolus: the magician’s hat for cell cycle tricks. Curr Opin Cell Biol 12:372–377

    Article  Google Scholar 

  101. Weisenberger D, Scheer U (1995) A possible mechanism for the inhibition of ribosomal RNA gene transcription during mitosis. J Cell Biol 129:561–575

    PubMed  Article  CAS  Google Scholar 

  102. Zatsepina OV, Todorov IT, Philipova RN, Krachmarov CP, Trendelenburg MF, Jordan EG (1997) Cell cycle-dependent translocations of a major nucleolar phosphoprotein, B23, and some characteristics of its variants. Eur J Cell Biol 73:58–70

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Myriam Barre for help in photographic work and A. L. Haenni for critical reading of the paper. This work was supported in part by grants from the Centre National de la Recherche Scientifique and the Association pour la Recherche sur le Cancer (Contract 3303).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Danièle Hernandez-Verdun.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hernandez-Verdun, D. Nucleolus: from structure to dynamics. Histochem Cell Biol 125, 127–137 (2006). https://doi.org/10.1007/s00418-005-0046-4

Download citation

Keywords

  • Nucleolus
  • Organization
  • Dynamics
  • Assembly