Skip to main content
Log in

Role of mitochondria in the regulation of hypoxia-inducible factor-1α in the rat carotid body glomus cells

  • Original paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Hypoxia-inducible factor-1α (HIF-1α) protein, a heterodimeric transcription factor that regulates transcriptional activation of several genes, is involved in adaptive responses to hypoxia. Earlier, we have reported that in carotid body (CB), the peripheral oxygen sensing organ, HIF-1α is up-regulated during hypoxia. One model proposes that an intact mitochondrial respiratory chain is necessary for this regulation of HIF-1α. To test this hypothesis in the CB glomus cells, we studied the effect of mitochondrial electron transport chain (ETC) inhibitors: rotenone (complex I; 1 μM), malonate (complex II; 0.5 M), antimycin A (complex III; 1 μg/ml), sodium azide (complex IV; 5 mM), and uncoupler of oxidative phosphorylation: carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP; 1 mM) on HIF-1α expression during normoxia and hypoxia. Inhibitors and uncoupler of mitochondrial ETC abrogated hypoxia-induced HIF-1α expression in isolated glomus cells significantly (P<0.001). Effect of rotenone during hypoxia was abolished by succinate (4 mM), a substrate for complex II. Further, HIF-1α expression was not altered by any of these mitochondrial inhibitors during normoxia. Taken together, these results strongly indicate that a functional mitochondrial ETC is required for the stabilization of HIF-1α, and further the connection between HIF-1α and mitochondria in CB oxygen sensing is reiterated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agani FH, Piciule P, Chavez JC, Lamanna JC (2000) The role of mitochondria in the regulation of hypoxia-inducible factor1 expression during hypoxia. J Biol Chem 275:35863–35867

    Article  PubMed  CAS  Google Scholar 

  • Anichkov SV, Belen‘kii ML (1963) Pharmacology of the carotid body chemoreceptors. Macmillan, New York

    Google Scholar 

  • Astrom K, Cohen JE, Willett-Brozick JE, Aston CE, Baysal BE (2003) Altitude is a phenotypic modifier in hereditary paraganglioma type 1: evidence for an oxygen-sensing defect. Hum Genet 113: 228–237

    Article  PubMed  Google Scholar 

  • Baby SM, Roy A, Mokashi AM, Lahiri S (2003) Effect of intracellular iron chelation on expression of hypoxia inducible factor-1α and −1β in the rat carotid body glomus cells. Histochem Cell Biol 120:343–352

    Article  PubMed  CAS  Google Scholar 

  • Buckler KJ, Vaughan-Jones RD (1998) Effects of mitochondrial uncouplers on intracellular calcium, pH and membrane potential in rat carotid body type I cells. J Physiol 513:819–833

    Article  PubMed  CAS  Google Scholar 

  • Buerk DG, Iturriaga R, Lahiri S (1994) Testing the metabolic hypothesis of O2 chemoreception in the cat carotid body in vitro. J Appl Physiol 76:1317–1323

    Article  PubMed  CAS  Google Scholar 

  • Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing. J Biol Chem 275:25130–25138

    Article  PubMed  CAS  Google Scholar 

  • Duchen MR, Biscoe TJ (1992) Relative mitochondrial membrane potential and [Ca2+]i in type I cells isolated from the rabbit carotid body. J Physiol 450:33–61

    PubMed  CAS  Google Scholar 

  • Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O‘Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54

    Article  PubMed  CAS  Google Scholar 

  • Hagen T, Taylor CT, Lam F, Moncada S (2003) Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1α. Science 302:1975–1978

    Article  PubMed  CAS  Google Scholar 

  • Huang LE, Gu J, Schau M, Bunn HF (1998) Regulation of hypoxia-inducible factor-1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 95:7987–7992

    Article  PubMed  CAS  Google Scholar 

  • Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kalelin WG Jr (2001) HIF-1α targeted for VHL-mediated destruction by proline hydroxylation: implications for O2sensing. Science 292:464–468

    Article  PubMed  CAS  Google Scholar 

  • Kline DD, Peng YJ, Manalo DJ, Semenza GL, Prabhakar NR (2002) Defective carotid body function and impaired ventilatory responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1α. Proc Natl Acad Sci USA 99:821–826

    Article  PubMed  CAS  Google Scholar 

  • Lahiri S (2004) Oxygen sensing in health and diseases. J Appl Physiol 96:1170–1172

    Article  Google Scholar 

  • Lahiri S, Rozanov C, Roy A, Storey B, Buerk DG (2001) Regulation of oxygen sensing in peripheral arterial chemoreceptors. Int J Biochem Cell Biol 33:755–774

    Article  PubMed  CAS  Google Scholar 

  • Lahiri S, Roy A, Baby SM, Semenza, G, Prabhakar NR (2005) Oxygen sensing in the body. Prog Biophys Mol Biol (in press)

  • Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML (2002) Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295:858–861

    Article  PubMed  CAS  Google Scholar 

  • Mateo J, Garcia-Lecea M, Cadenas S, Hernandez C, Moncada S (2003) Regulation of hypoxia-inducible factor-1α by nitric oxide through mitochondria-dependent and -independent pathways. Biochem J 376:537–544

    Article  PubMed  CAS  Google Scholar 

  • Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275

    Article  PubMed  CAS  Google Scholar 

  • Mosqueria M, Iturriaga R (2002) Carotid body chemosensory excitation induced by nitric oxide: involvement of oxidative metabolism. Respir Physiol Neurobiol 131:175–187

    Article  Google Scholar 

  • Mulligan E, Lahiri S (1982) Separation of carotid body chemoreceptor responses to O2 and CO2 by oligomycin and by antimycin A. Am J Physiol 242:C200–206

    PubMed  CAS  Google Scholar 

  • Mulligan E, Lahiri S, Storey BT (1981) Carotid body O2 chemoreception and mitochondrial oxidative phosphorylation. J Appl Physiol 51:438–446

    PubMed  CAS  Google Scholar 

  • Ortega-Saenz P, Pardal R, Garcia-Fernandez M, Lopez-Barneo J (2003) Rotenone selectively occludes sensitivity to hypoxia in rat carotid body glomus cells. J Physiol 548:789–800

    Article  PubMed  CAS  Google Scholar 

  • Roy A, Li J, Al-Mehdi AB, Mokashi A, Lahiri S (2002) Effect of acute hypoxia on glomus cell E m and Ψ m as measured by fluorescence imaging. J Appl Physiol 93:1987–1998

    PubMed  Google Scholar 

  • Roy A, Denys V, Baby SM, Mokashi A, Kubin L, Lahiri S (2004a) Activation of HIF-1α mRNA by hypoxia and iron chelator in isolated rat carotid body. Neurosci Lett 363:229–232

    Article  CAS  Google Scholar 

  • Roy A, Li J, Baby SM, Mokashi A, Buerk DG, Lahiri S (2004b) Effects of iron-chelators on ion-channels and HIF-1alpha in the carotid body. Respir Physiol Neurobiol 141:115–123

    Article  CAS  Google Scholar 

  • Schroedl C, McClintock DS, Budinger GR, Chandel NS (2002) Hypoxic but not anoxic stabilization of HIF-1α requires mitochondrial reactive oxygen species. Am J Physiol 283:L922–931

    CAS  Google Scholar 

  • Semenza GL (2000) Expression of hypoxia-inducible factor-1: mechanisms and consequences. Biochem Pharmacol 59:47–53

    Article  PubMed  CAS  Google Scholar 

  • Shimoda LA, Manalo DJ, Sham JS, Semenza GL, Sylvester JT (2001) Partial HIF-1α deficiency impairs pulmonary arterial myocyte electrophysiological responses to hypoxia. Am J Physiol Lung Cell Mol Physiol 281:L202–L208

    PubMed  CAS  Google Scholar 

  • Srinivas V, Leshchinsky I, Sang N, King MP, Minchenko A, Caro J (2001) Oxygen sensing and HIF-1 activation does not require an active mitochondrial respiratory chain electron transfer pathway. J Biol Chem 276:21995–21998

    Article  PubMed  CAS  Google Scholar 

  • Vaux EC, Metzen E, Yeates KM, Ratcliffe PJ (2001) Regulation of hypoxia-inducible factor is preserved in the absence of a functioning mitochondrial respiratory chain. Blood 98:296–302

    Article  PubMed  CAS  Google Scholar 

  • Wyatt CN, Buckler KJ (2004) The effect of mitochondrial inhibitors on membrane currents in isolated neonatal rat carotid body type I cells. J Physiol 556:175–191

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by R 37-HL-43413-15 and S.M.B is a recipient of NRSA Fellowship Award (T32 HL-07207-30).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukhamay Lahiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baby, S.M., Roy, A. & Lahiri, S. Role of mitochondria in the regulation of hypoxia-inducible factor-1α in the rat carotid body glomus cells. Histochem Cell Biol 124, 69–76 (2005). https://doi.org/10.1007/s00418-005-0028-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-005-0028-6

Keywords

Navigation