Skip to main content

Advertisement

Log in

Differential regulation of AQP2 trafficking in endosomes by microtubules and actin filaments

  • Original paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Vasopressin-induced trafficking of aquaporin-2 (AQP2) water channels in kidney collecting duct cells is critical to regulate the urine concentration. To better understand the mechanism of subcellular trafficking of AQP2, we examined MDCK cells expressing AQP2 as a model. We first performed double-immunolabeling of AQP2 with endosomal marker proteins, and showed that AQP2 is stored at a Rab11-positive subapical compartment. After the translocation to the plasma membrane, AQP2 was endocytosed to EEA1-positive early endosomes, and then transferred back to the original Rab11-positive compartment. When Rab11 was depleted by RNA interference, retention of AQP2 at the subapical storage compartment was impaired. We next examined the role of cytoskeleton in the AQP2 trafficking and localization. By the treatment with microtubule-disrupting agent such as nocodazole or colcemid, the distribution of AQP2 storage compartment was altered. The disruption of actin filaments with cytochalasin D or latrunculin B induced the accumulation of AQP2 in EEA1-positive early endosomes. Altogether, our data suggest that Rab11 and microtubules maintain the proper distribution of the subapical AQP2 storage compartment, and actin filaments regulate the trafficking of AQP2 from early endosomes to the storage compartment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Apodaca G (2001) Endocytic traffic in polarized epithelial cells: role of the actin and microtubule cytoskeleton. Traffic 2:149–159

    Article  PubMed  CAS  Google Scholar 

  • Asai T, Kuwahara M, Kurihara H, Sakai T, Terada Y, Marumo F, Sasaki S (2003) Pathogenesis of nephrogenic diabetes insipidus by aquaporin-2 C-terminus mutations. Kidney Int 64:2–10

    Article  PubMed  CAS  Google Scholar 

  • Breton S, Brown D (1998) Cold-induced microtubule disruption and relocalization of membrane proteins in kidney epithelial cells. J Am Soc Nephrol 9:155–166

    PubMed  CAS  Google Scholar 

  • Brown D (2003) The ins and outs of aquaporin-2 trafficking. Am J Physiol Renal Physiol 284:F893–F901

    PubMed  CAS  Google Scholar 

  • Casanova JE, Wang X, Kumar R, Bhartur SG, Navarre J, Woodrum JE, Altschuler Y, Ray GS, Goldenring JR (1999) Association of Rab25 and Rab11a with the apical recycling system of polarized Madin-Darby canine kidney cells. Mol Biol Cell 10:47–61

    PubMed  CAS  Google Scholar 

  • Chavrier P, Vingron M, Sander C, Simons K, Zerial M. (1990) Molecular cloning of YPT1/SEC4-related cDNAs from an epithelial cell line. Mol Cell Biol 10:6578–6585

    PubMed  CAS  Google Scholar 

  • Cooper JA (1987) Effects of cytochalasin and phalloidin on actin. J Cell Biol 105:1473–1478

    Article  PubMed  CAS  Google Scholar 

  • da Costa SR, Okamoto CT, Hamm-Alvarez SF (2003) Actin microfilaments et al–the many components, effectors and regulators of epithelial cell endocytosis. Adv Drug Deliv Rev 55:1359–1383

    Article  PubMed  CAS  Google Scholar 

  • Fukata M, Nakagawa M, Kaibuchi K (2003) Roles of Rho-family GTPases in cell polarisation and directional migration. Curr Opin Cell Biol 15:590–597

    Article  PubMed  CAS  Google Scholar 

  • Goldenring JR, Smith J, Vaughan HD, Cameron P, Hawkins W, Navarre J (1996) Rab11 is an apically located small GTP-binding protein in epithelial tissues. Am J Physiol 270:G515–G525

    PubMed  CAS  Google Scholar 

  • Hays RM, Franki N, Simon H, Gao Y (1994) Antidiuretic hormone and exocytosis: lessons from neurosecretion. Am J Physiol 267:C1507–1524

    PubMed  CAS  Google Scholar 

  • Hoebeke J, van Nijen G, de Brabander M (1976) Interaction of oncodazole (R 17934), a new antitumoral drug, with rat brain tubulin. Biochem Biophys Res Commun 69:319–324

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra D, Tyteca D, van Ijzendoorn SC (2004) The subapical compartment: a traffic center in membrane polarity development. J Cell Sci 117:2183–2192

    Article  PubMed  CAS  Google Scholar 

  • Klussmann E, Maric K, Rosenthal W (2000) The mechanisms of aquaporin control in the renal collecting duct. Rev Physiol Biochem Pharmacol 141:33–95

    PubMed  CAS  Google Scholar 

  • Klussmann E, Tamma G, Lorenz D, Wiesner B, Maric K, Hofmann F, Aktories K, Valenti G, Rosenthal W (2001) An inhibitory role of Rho in the vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J Biol Chem 276:20451–20457

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Sun TX, Bouley R, Blackburn K, McLaughlin M, Brown D (2004) Inhibition of endocytosis causes phosphorylation (S256)-independent plasma membrane accumulation of AQP2. Am J Physiol Renal Physiol 286:F233–F243

    Article  PubMed  CAS  Google Scholar 

  • Marples D, Schroer TA, Ahrens N, Taylor A, Knepper MA, Nielsen S (1998) Dynein and dynactin colocalize with AQP2 water channels in intracellular vesicles from kidney collecting duct. Am J Physiol 274:F384–F394

    PubMed  CAS  Google Scholar 

  • Merlot S, Firtel RA (2003) Leading the way: Directional sensing through phosphatidylinositol 3-kinase and other signaling pathways. J Cell Sci 116:3471–3478

    Article  PubMed  CAS  Google Scholar 

  • Millard TH, Sharp SJ, Machesky LM (2004) Signalling to actin assembly via the WASP (Wiskott-Aldrich syndrome protein)-family proteins and the Arp2/3 complex. Biochem J 380:1–17

    Article  PubMed  CAS  Google Scholar 

  • Musch A (2004) Microtubule organization and function in epithelial cells. Traffic 5:1–9

    Article  PubMed  Google Scholar 

  • Noda Y, Horikawa S, Katayama Y, Sasaki S (2004) Water channel aquaporin-2 directly binds to actin. Biochem Biophys Res Commun 322:740–745

    Article  PubMed  CAS  Google Scholar 

  • Omata W, Shibata H, Li L, Takata K, Kojima I (2000) Actin filaments play a critical role in insulin-induced exocytotic recruitment but not in endocytosis of GLUT4 in isolated rat adipocytes. Biochem J 346:321–328

    Article  PubMed  CAS  Google Scholar 

  • Qualmann B, Mellor H (2003) Regulation of endocytic traffic by Rho GTPases. Biochem J 371:233–241

    Article  PubMed  CAS  Google Scholar 

  • Sabolic I, Katsura T, Verbavatz JM, Brown D (1995) The AQP2 water channel: effect of vasopressin treatment, microtubule disruption, and distribution in neonatal rats. J Membr Biol 143:165–175

    Article  PubMed  CAS  Google Scholar 

  • Saltiel AR, Pessin JE (2003) Insulin signaling in microdomains of the plasma membrane. Traffic 4:711–716

    Article  PubMed  CAS  Google Scholar 

  • Sarmiere PD, Bamburg JR (2004) Regulation of the neuronal actin cytoskeleton by ADF/cofilin. J Neurobiol 58:103–117

    Article  PubMed  CAS  Google Scholar 

  • Saunders C, Limbird LE (1997) Disruption of microtubules reveals two independent apical targeting mechanisms for G-protein-coupled receptors in polarized renal epithelial cells. J Biol Chem 272:19035–19045

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Hall A (2002) Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev 16:1587–1609

    Article  PubMed  CAS  Google Scholar 

  • Spector I, Braet F, Shochet NR, Bubb MR (1999) New anti-actin drugs in the study of the organization and function of the actin cytoskeleton. Microsc Res Tech 47:18–37

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Fujikura K, Koyama H, Matsuzaki T, Takahashi Y, Takata K (2001) The apical localization of SGLT1 glucose transporter is determined by the short amino acid sequence in its N-terminal domain. Eur J Cell Biol 80:765–774

    Article  PubMed  CAS  Google Scholar 

  • Tajika Y, Matsuzaki T, Suzuki T, Aoki T, Hagiwara H, Tanaka S, Kominami E, Takata K (2002) Immunohistochemical characterization of the intracellular pool of water channel aquaporin-2 in the rat kidney. Anat Sci Int 77:189–195

    Article  PubMed  Google Scholar 

  • Tajika Y, Matsuzaki T, Suzuki T, Aoki T, Hagiwara H, Kuwahara M, Sasaki S, Takata K (2004) Aquaporin-2 is retrieved to the apical storage compartment via early endosomes and phosphatidylinositol 3-kinase-dependent pathway. Endocrinology 145:4375–4383

    Article  PubMed  CAS  Google Scholar 

  • Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81:153–208

    PubMed  CAS  Google Scholar 

  • Takata K, Matsuzaki T, Tajika Y (2004) Aquaporins: water channel proteins of the cell membrane. Prog Histochem Cytochem 39:1–83

    Article  PubMed  CAS  Google Scholar 

  • Tamma G, Klussmann E, Maric K, Aktories K, Svelto M, Rosenthal W, Valenti G (2001) Rho inhibits cAMP-induced translocation of aquaporin-2 into the apical membrane of renal cells. Am J Physiol Renal Physiol 281:F1092–F1101

    PubMed  CAS  Google Scholar 

  • Tamma G, Klussmann E, Procino G, Svelto M, Rosenthal W, Valenti G (2003) cAMP-induced AQP2 translocation is associated with RhoA inhibition through RhoA phosphorylation and interaction with RhoGDI. J Cell Sci 116:1519–1525

    Article  PubMed  CAS  Google Scholar 

  • Ullrich O, Reinsch S, Urbe S, Zerial M, Parton RG (1996) Rab11 regulates recycling through the pericentriolar recycling endosome. J Cell Biol 135:913–924

    Article  PubMed  CAS  Google Scholar 

  • Valentich JD (1981) Morphological similarities between the dog kidney cell line MDCK and the mammalian cortical collecting tubule. Ann N Y Acad Sci 372:384–405

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Ms. Y. Takahashi-Tajika and Ms. S. Fukushima for secretarial and technical assistance. This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuniaki Takata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tajika, Y., Matsuzaki, T., Suzuki, T. et al. Differential regulation of AQP2 trafficking in endosomes by microtubules and actin filaments. Histochem Cell Biol 124, 1–12 (2005). https://doi.org/10.1007/s00418-005-0010-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-005-0010-3

Keywords

Navigation