Skip to main content
Log in

The novel protein PTPIP51 exhibits tissue- and cell-specific expression

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The expression patterns of both mRNA and protein of the novel protein tyrosine phosphatase interacting protein 51 (PTPIP51) were studied in various organs by in situ hybridization, immunoblotting, and immunocytochemistry. The protein was found in all mammalian species investigated: guinea pig, rat, mouse, pig, and human. The presence of the protein was, however, restricted to specific organs. High levels of PTPIP51 were found in epidermis and seminiferous epithelium. The expression appears to be associated with distinct stages of differentiation. While basal cells in the epidermis and spermatogonia showed no perceptible amount of PTPIP51, keratinocytes of suprabasal layers and differentiating first-order spermatocytes up to spermatids exhibited high expression. In skeletal muscle, the presence of PTPIP51 was restricted to fibers of the fast twitch type. In surface epithelia containing ciliated cells, the protein was associated with the microtubular structures responsible for ciliary movement. Furthermore, specific structures of the central nervous system, for example, neurons of the hippocampal region, ganglion cells of the autonomic nervous system, and axons of the peripheral nervous system showed a distinct staining pattern with the antibody to PTPIP51. Our data suggest that PTPIP51 might be involved in the regulation of cellular processes associated with differentiation, movement, or cytoskeletal organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 a
Fig. 2
Fig. 3a–f
Fig. 4a–f
Fig. 5a–e
Fig. 6a–d
Fig. 7a–f
Fig. 8a, b
Fig. 9a, b
Fig. 10a–f
Fig. 11

Similar content being viewed by others

References

  • Alvarez B, Lim DA (2004) For the long run: maintaining germinal niches in the adult brain. Neuron 41:683–686

    PubMed  Google Scholar 

  • Andrade MA, Perez-Iratxeta C, Ponting CP (2001) Protein repeats: structures, functions, and evolution. J Struct Biol 134:117–131

    Article  CAS  PubMed  Google Scholar 

  • Avraham H, Park SY, Schinkmann K, Avraham S (2000) RAFTK/Pyk2-mediated cellular signalling. Cell Signal 12:123–133

    Article  CAS  PubMed  Google Scholar 

  • Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771

    Article  CAS  PubMed  Google Scholar 

  • Bottai D, Fiocco R, Gelain F, Defilippis L, Galli R, Gritti A, Vescovi LA (2003) Neural stem cells in the adult nervous system. J Hematother Stem Cells Res 12:655–670

    Article  Google Scholar 

  • Brown ME, Bridgman PC (2004) Myosin function in nervous and sensory systems. J Neurobiol 58:116–130

    Google Scholar 

  • Burke TR Jr, Zhang ZY (1989) Protein-tyrosine phosphatases: structure, mechanism and inhibitor discovery. Biopolymers 47:225–241

    Article  Google Scholar 

  • Cheng A, Dube N, Gu F, Tremblay M-L (2002) Coordinated action of protein tyrosine phosphatases in insulin signal transduction. Eur J Biochem 269:1050–1059

    CAS  PubMed  Google Scholar 

  • Clark HF, Gurney AL, Abaya E, Baker K, Baldwin D, Brush J, Chen J, Chow B, Chui C, Crowley C et al (2003) The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment. Genome Res 13:2265–2270

    CAS  PubMed  Google Scholar 

  • Davies TH, Sanchez ER (2005) Fkbp52. Int J Biochem Cell Biol 37:42–47

    CAS  PubMed  Google Scholar 

  • Dent EW, Tang F, Kalil K (2003) Axon guidance by growth cones and branches: common cytoskeletal and signaling mechanisms. Neuroscientist 9:343–353

    CAS  PubMed  Google Scholar 

  • Fuchs E (1996) The cytoskeleton and disease: genetic disorders of intermediate filaments. Annu Rev Genet 30:197–231

    Google Scholar 

  • Haberberger RV, Bernardini N, Kress M, Hartmann P, Lips KS, Kummer W (2004) Nicotinic acetylcholine receptor subtypes in nociceptive dorsal root ganglion neurons of the adult rat. Autonom Neurosci Basic Clin 113:32–42

    CAS  Google Scholar 

  • Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374:1–20

    Google Scholar 

  • Johnson KG, Van-Vactor D (2003) Receptor protein tyrosine phosphatases in nervous system development Physiol Rev 83:1–24

    Google Scholar 

  • Kierszenbaum AL (2002) Keratins: unraveling the coordinated construction of scaffolds in spermatogenic cells. Mol Reprod Rev 61:1–2

    Google Scholar 

  • Ledesma MD, Dotti CG (2003) Membrane and cytoskeleton dynamics during axonal elongation and stabilization. Int Rev Cytol 227:183–219

    CAS  PubMed  Google Scholar 

  • Lehrach H, Diamond D, Wozney JM, Boedtker H (1977) RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry 16:4743–4751

    CAS  PubMed  Google Scholar 

  • Lewis FA, Wells M (1992) Detection of virus in infected human tissue by in situ hybridization. In: Wilkinson DG (ed) In situ hybridization: a practical approach. Oxford University Press, Oxford, pp 121–135

  • Lips KS, Pfeil U, Reiners K, Rimasch C, Kuchelmeister K, Braun-Dullaeus C, Haberberger RV, Schmidt R, Kummer W (2003) Expression of the high-affinity choline transporter CHT1 in rat and human arteries. J Histochem Cytochem 51:1645–1654

    CAS  PubMed  Google Scholar 

  • Miller CC, Ackerley S, Brownlees J, Grieson AJ, Jacobson NJ, Thornhill P (2002) Axonal transport of neurofilaments in normal and disease states. Cell Mol Life Sci 59:323–330

    CAS  PubMed  Google Scholar 

  • Mustelin T, Feng GS, Bottini N, Alonso A, Kholod N, Birle D, Merlo J, Huynh H (2002) Protein tyrosine phosphatases. Front Biosci 7:85–142

    Google Scholar 

  • Mustelin T, Rahmouni S, Bottini N, Alonso A (2003) Role of protein tyrosine phosphatases in T cell activation. Immunol Rev 191:139–47

    CAS  PubMed  Google Scholar 

  • Olmsted JB (1981) Affinity purification of antibodies from diazotized paper blots of heterogeneous protein samples. J Biol Chem 256:11955–11957

    CAS  PubMed  Google Scholar 

  • Ostman A, Bohmer FD (2001) Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatases. Trends Cell Biol 11:258–266

    CAS  PubMed  Google Scholar 

  • Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K et al (2004) Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet 36:40–45

    PubMed  Google Scholar 

  • Paul S, Lombroso PJ (2003) Receptor and nonreceptor protein tyrosine phosphatases in the nervous system. Cell Mol Life Sci 60:2465–2482

    CAS  PubMed  Google Scholar 

  • Pette D, Staron RS (1997) Mammalian skeletal muscle fiber type transitions. Int Rev Cytol 170:143–223

    CAS  PubMed  Google Scholar 

  • Porsche A (2001) Identifikation von Interaktionspartnern der T-Zell Protein-Tyrosin-Phosphatase durch das Lex-A Two Hybrid System. PhD Thesis, University of Konstanz, UFO Publishers, Allensbach, vol 414

  • Santini D, Ceccarelli C, Mazzoleni G, Pasquinelli G, Jasonni VM, Martinelli GN (1993) Demonstration of cytokeratin intermediate filaments in oocytes of the developing and adult human ovary. Histochemistry 99:311–319

    CAS  PubMed  Google Scholar 

  • Sarmiere PD, Bamburg JR (2004) Regulation of the neuronal actin cytoskeleton by ADF/confilin. J Neurobiol 58:103–117

    CAS  PubMed  Google Scholar 

  • Schmidt-Hieber C, Jonas P, Bischofsberger J (2004) Enhanced synaptic plasticity in newly generated granule cells of adult hippocampus. Nature 429:184–187

    CAS  PubMed  Google Scholar 

  • Steger K (2001) Haploid spermatids exhibit translationally repressed mRNAs. Anat Embryol 203:323–334

    CAS  PubMed  Google Scholar 

  • Steger K, Klonisch T, Gavenis K, et al (1998) Expression of mRNA and protein of nucleoproteins during human spermiogenesis. Mol Hum Reprod 4:939–945

    CAS  PubMed  Google Scholar 

  • Steger K, Pauls K, Klonisch T, et al (2000) Expression of protamine 1 and 2 mRNA during human spermiogenesis. Mol Hum Reprod 6:219–225

    CAS  PubMed  Google Scholar 

  • Stenzinger A, Tag C, Wimmer M (2003) A T cell PTP interacting protein 51 (TcPTPIP51) is expressed in dependence of differentiaton. Mol Cell Proteomics 2:712

    Google Scholar 

  • Strelkov SV, Herrmann H, Ueli A (2003) Molecular architecture of intermediate filaments. Bioessays 25:243–251

    CAS  PubMed  Google Scholar 

  • Tiganis T (2002) Protein tyrosine phosphatases: dephosphorylating the epidermal growth factor receptor. IUBMB Life 53:3–14

    CAS  PubMed  Google Scholar 

  • Tonks NK (2003) PTP1B: from the sidelines to the front lines! FEBS Lett 546:140–148

    Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354

    CAS  PubMed  Google Scholar 

  • Wimmer M, Hofer HW, Tag C, Stenzinger A (2003) TCPTPIP51 expression is upregulated in fast twitch skeletal muscle by low frequency stimulation. Eur J Biochem 270(suppl 1):167

    Google Scholar 

  • Witte S, Krawinkel U (1997) Specific interactions of the autoantigen L7 with multi-zinc finger protein ZNF7 and ribosomal protein S7. J Biol Chem 272:22243–22247

    CAS  PubMed  Google Scholar 

  • Zhang ZY (2002) Protein tyrosine phosphatases: structure and function, substrate specificity, and inhibitor development. Annu Rev Pharmacol Toxicol 42:209–234

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to Dr. H.J. Teschemacher (Department of Pharmacology, Giessen, Germany), Dr. N.E. Fusenig, and Dr. D. Breitkreutz (DKFZ, Heidelberg, Germany) for the gift of human keratinocytes, and to Martin Bodenbenner (Giessen) and Ulrike Schlapp (Bad Nauheim) for help with cell cultures and technical assistance. We thank Dr. R.L. Snipes for linguistic revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albrecht Stenzinger.

Additional information

Tobias Kajosch died on August 9th 2004

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stenzinger, A., Kajosch, T., Tag, C. et al. The novel protein PTPIP51 exhibits tissue- and cell-specific expression. Histochem Cell Biol 123, 19–28 (2005). https://doi.org/10.1007/s00418-004-0732-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-004-0732-7

Keywords

Navigation