Skip to main content

Advertisement

Log in

Expression of the VEGF receptor-3 in osteoarthritic chondrocytes: stimulation by interleukin-1β and association with β1-integrins

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Recent studies have demonstrated enhanced expression of vascular endothelial growth factor and vascular endothelial growth factor receptor (VEGFR)-1 and -2 in chondrocytes of rheumatoid and osteoarthritic cartilage. Since expression of VEGFR-3 (Flt-4) in chondrocytes has not yet been investigated, we studied the distribution of VEGFR-3 in osteoarthritic cartilage samples by immunohistochemistry and immunoelectron microscopy. Furthermore, we looked for functional colocalization of VEGFR-3 with the signal transduction receptor β1-integrin. Superficial osteoarthritic chondrocytes exhibited VEGFR-3 expression in the cytoplasm and on the cell membrane. Using western blotting we could demonstrate that interleukin-1β (IL-1β) stimulates the expression of VEGFR-3 in chondrocytes in vitro in a dose-dependent manner. By coimmunoprecipitation assay we found a functional complex between the β1-integrin and VEGFR-3 in IL-1β-stimulated chondrocytes indicating that activated VEGFR-3 may interact with β1-integrin and associated subcellular pathways in osteoarthritic chondrocytes. Taken together with results of previous studies showing that β1-integrins were also associated with other surface receptors and proteins in chondrocytes that cause cartilage destruction in arthritis (for example, urokinase-type plasminogen activator receptor and matrix metalloproteinases), we can hypothesize that signal transduction by these receptor complexes via β1-integrins may play a crucial role in pathogenesis of osteoarticular disorders. Further work needs to be done to elucidate downstream signaling events activated by these receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c.
Fig. 2a, b.
Fig. 3a, b.
Fig. 4a, b.

Similar content being viewed by others

References

  • Afuwape AO, Kiriakidis S, Paleolog EM (2002) The role of the angiogenic molecule VEGF in the pathogenesis of rheumatoid arthritis. Histol Histopathol 17:961–972

    CAS  PubMed  Google Scholar 

  • Aizawa T, Kon T, Einhorn TA, Gerstenfeld LC (2001) Induction of apoptosis in chondrocytes by tumour necrosis factor-alpha. J Orthop Res 19:785–796

    Article  CAS  PubMed  Google Scholar 

  • Borg JP, deLapeyriere O, Noguchi T, Rottapel R, Dubreuil P, Birnbaum D (1995) Biochemical characterization of two isoforms of FLT4, a VEGF receptor-related tyrosine kinase. Oncogene 10:973–984

    CAS  PubMed  Google Scholar 

  • Cao L, Lee V, Adams ME, Kiani C, Zhang Y, Hu W, Yang BB (1999) β-integrin–collagen interaction reduces chondrocyte apoptosis. Matrix Biol 18:343–355

    Article  CAS  PubMed  Google Scholar 

  • Carlevaro MF, Cermelli S, Cancedda R, Descalzi Cancedda F (2000) Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: auto-paracrine role during endochondral bone formation. J Cell Sci 113:59–69

    CAS  PubMed  Google Scholar 

  • Chen KD, Li YS, Kim M, Li S, Yuan S, Chien S, Shyy JY (1999) Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J Biol Chem 274:18393–18400

    Article  CAS  PubMed  Google Scholar 

  • Deckers MM, Karperien M, van der Bent C, Yamashita T, Papapoulos SE, Lowik CW (2000) Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation. Endocrinology 141:1667–1674

    CAS  PubMed  Google Scholar 

  • Enomoto H, Inoki I, Komiya K, Shiomi T, Ikeda E, Obata K, Matsumoto H, Toyama Y, Okada Y (2003) Vascular endothelial growth factor isoforms and their receptors are expressed in human osteoarthritic cartilage. Am J Pathol 162:171–181

    CAS  PubMed  Google Scholar 

  • Fearon U, Griosios K, Fraser A, Reece R, Emery P, Jones PF, Veale DJ (2003) Angiopoietins, growth factors, and vascular morphology in early arthritis. J Rheumatol 30:260–268

    CAS  PubMed  Google Scholar 

  • Ferrara N (2002) Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin Oncol 29:10–14

    Article  CAS  Google Scholar 

  • Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N (1999) VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5:623–628

    CAS  PubMed  Google Scholar 

  • Giatromanolaki A, Sivridis E, Athanassou N, Zois E, Thorpe PE, Brekken RA, Gatter KC, Harris AL, Koukourakis IM, Koukourakis MI (2001) The angiogenic pathway "vascular endothelial growth factor/flk-1(KDR)-receptor" in rheumatoid arthritis and osteoarthritis. J Pathol 194:101–108

    Article  CAS  PubMed  Google Scholar 

  • Harper J, Kalgsbrun M (1999) Cartilage to bone: -angiogenesis leads the way. Nat Med 5:617–618

    Article  CAS  PubMed  Google Scholar 

  • Kaipainen A, Korhonen J, Pajusola K, Aprelikova O, Persico MG, Terman BI, Alitalo K (1993) The related FLT4, FLT1, and KDR receptor tyrosine kinases show distinct expression patterns in human fetal endothelial cells. J Exp Med 178:2077–2088

    CAS  PubMed  Google Scholar 

  • Knudson W, Loeser RF (2002) CD44 and integrin matrix receptors participate in cartilage homeostasis. Cell Mol Life Sci 59:36–44

    Article  Google Scholar 

  • Kume K, Satomura K, Nishisho S, Kitaoka E, Yamanouchi K, Tobiume S, Nagayama M (2002) Potential role of leptin in endochondral ossification. J Histochem Cytochem 50:159–169

    CAS  PubMed  Google Scholar 

  • Kusafuka K, Hiraki Y, Shukunami C, Kayano T, Takemura T (2002) Cartilage-specific matrix protein, chondromodulin-I (ChM-I), is a strong angio-inhibitor in endochondral ossification of human neonatal vertebral tissues in vivo: relationship with angiogenic factors in the cartilage. Acta Histochem 104:167–175

    CAS  PubMed  Google Scholar 

  • Loeser RF (2002) Integrins and cell signalling in chondrocyte. Biorheology 39:119–124

    CAS  PubMed  Google Scholar 

  • Mäkinen T, Veikkola T, Mustjoki S, Karpanen T, Catimel B, Nice EC, Wise L, Mercer A, Kowalski H, Kerjaschki D, Stacker SA, Achen MG, Alitalo K (2001) Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J 20:4762–4773

    Article  CAS  PubMed  Google Scholar 

  • Mankin HJ, Dorfman H, Lippiello L, Zarins A (1971) Biochemical and metabolic abnormalities in articular cartilage from osteoarthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am 53:523–537

    CAS  PubMed  Google Scholar 

  • Matsumura K, Hirashima M, Ogawa M, Kubo H, Hisatsune H, Kondo N, Nishikawa S, Chiba T, Nishikawa SI (2003) Modulation of VEGFR-2-mediated endothelial cell activity by VEGF-C/VEGFR-3. Blood 101:1367–1374

    Article  CAS  PubMed  Google Scholar 

  • Mayr-Wohlfart U, Waltenberger J, Hausser H, Kessler S, Gunther KP, Dehio C, Puhl W, Brenner RE (2002) Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts. Bone 30:472–477

    Article  CAS  PubMed  Google Scholar 

  • Mobasheri A, Carter SD, Martín-Vasallo P, Shakibaei M (2002a) Integrins and stretch activated ion channels: putative components of functional cell surface mechanoreceptors in articular chondrocytes. Cell Biol Int 26:1–18

    CAS  PubMed  Google Scholar 

  • Mobasheri A, Vannucci SJ, Bondy CA, Carter SD, Innes JF, Arteaga MF, Trujillo E, Ferraz I, Shakibaei M, Martín-Vasallo P (2002b) Glucose transport and metabolism in chondrocytes: a key to understanding chondrogenesis, skeletal development and cartilage degradation in osteoarthritis. Histol Histopathol 17:1239–1267

    CAS  PubMed  Google Scholar 

  • Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13:9–22

    CAS  PubMed  Google Scholar 

  • Paavonen K, Mandelin J, Partanen T, Jussila L, Li TF, Ristimaki A, Alitalo K, Konttinen YT (2002) Vascular endothelial growth factors C and D and their VEGFR-2 and -3 receptors in blood and lymphatic vessels in healthy and arthritic synovium. J Rheumatol 29:39–45

    CAS  PubMed  Google Scholar 

  • Paleolog EM, Young S, Stark AC, McCloskey RV, Feldmann M, Maini RN (1998) Modulation of angiogenic vascular endothelial growth factor by tumor necrosis factor alpha and interleukin-1 in rheumatoid arthritis. Arthritis Rheum 41:1258–1265

    Article  CAS  PubMed  Google Scholar 

  • Petrova TV, Makinen T, Alitalo K (1999) Signaling via vascular endothelial growth factor receptors. Exp Cell Res 253:117–130

    Article  CAS  PubMed  Google Scholar 

  • Pfander D, Cramer T, Weseloh G, Pullig O, Schuppan D, Bauer M, Swoboda B (1999) Hepatocyte growth factor in human osteoarthritic cartilage. Osteoarthritis Cartilage 7:548–559

    Article  CAS  PubMed  Google Scholar 

  • Pufe T, Peterson W, Tillmann B, Mentlein R (2001) The splice variants VEGF121 and VEGF189 of the angiogenic peptide vascular endothelial growth factor are expressed in osteoarthritic cartilage. Arthritis Rheum 44:1082–1088

    CAS  PubMed  Google Scholar 

  • Richardson S, Neama G, Phillips T, Bell S, Carter SD, Moley KH, Moley JF, Vannucci SJ, Mobasheri A (2003) Molecular characterization and partial cDNA cloning of facilitative glucose transporters expressed in human articular chondrocytes: stimulation of 2-deoxyglucose uptake by IGF-I and elevated MMP-2 secretion by glucose deprivation. Osteoarthritis Cartilage 11:92–101

    Article  CAS  PubMed  Google Scholar 

  • Robinson CJ, Stringer SE (2001) The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci 114:853–865

    CAS  PubMed  Google Scholar 

  • Sawano A, Iwai S, Sakurai Y, Ito M, Shitara K, Nakahata T, Shibuya M (2001) Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood 97:785–791

    Article  CAS  PubMed  Google Scholar 

  • Schulze-Tanzil G, de Souza P, Merker H-J, Shakibaei M (2001) Co-localization of integrins and matrix metalloproteinases in the extracellular matrix of chondrocyte cultures. Histol Histopathol 16:1081–1089

    CAS  PubMed  Google Scholar 

  • Schwab W, Kasper M, Gavlik JM, Schulze E, Funk RHW, Shakibaei M (2000) Characterization of caveolins from human knee joint cartilage: expression of caveolin-1, -2 and -3 in chondrocytes and association with integrin β1. Histochem Cell Biol 113:221–225

    Article  CAS  PubMed  Google Scholar 

  • Schwab W, Gavlik JM, Beichler T, Funk RH, Albrecht S, Magdolen V, Luther T, Kasper M, Shakibaei M (2001) Expression of the urokinase-type plasminogen activator receptor in human articular chondrocytes: association with caveolin and β1-integrin. Histochem Cell Biol 115:317–323

    CAS  PubMed  Google Scholar 

  • Shakibaei M, de Souza P (1997) Differentiation of mesenchymal limb bud cells to chondrocytes in alginate beads. Cell Biol Int 21:75–86

    Article  CAS  PubMed  Google Scholar 

  • Shakibaei M, Mobasheri A (2003) β1-integrins co-localize with Na, K-ATPase, ENaC and voltage activated calcium channels (VACC) in mechanoreceptor complexes of mouse limb bud chondrocytes. Histol Histopathol 18:343–351

    CAS  PubMed  Google Scholar 

  • Shakibaei M, Abou-Rebyeh H, Merker H-J (1993) Integrins in ageing cartilage tissue in vitro. Histol Histopathol 8:715–723

    CAS  PubMed  Google Scholar 

  • Shakibaei M, John T, de Souza P, Rahmanzadeh R, Merker HJ (1999) Signal transduction by β1-integrin receptors in human chondrocytes in vitro: collaboration with the insulin-like growth factor-I receptor. Biochem J 342:615–623

    Article  CAS  PubMed  Google Scholar 

  • Shakibaei M, Schulze-Tanzil G, de Souza P, John T, Rahmanzadeh M, Rahmanzadeh R, Merker H-J (2001) Inhibition of mitogen-activated protein kinase induces apoptosis of human chondrocytes. J Biol Chem 276:13289–13294

    CAS  PubMed  Google Scholar 

  • Wang JF, Zhang XF, Groopman JE (2001) Stimulation of β1-integrin induces tyrosine phosphorylation of vascular endothelial growth factor receptor-3 and modulates cell migration. J Biol Chem 276:41950–41957

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Miao H, Li S, Chen KD, Li YS, Yuan S, Shyy JY, Chien S (2002) Interplay between integrins and FLK-1 in shear stress-induced signaling. Am J Physiol Cell Physiol 283:C1540–C1547

    CAS  PubMed  Google Scholar 

  • Wauke K, Nagashima M, Ishiwata T, Asano G, Yoshino S (2002) Expression and localization of vascular endothelial growth factor-C in rheumatoid arthritis synovial tissue. J Rheumatol 29:34–38

    CAS  PubMed  Google Scholar 

  • Westacott CI, Barakat AF, Wood L, Perry MJ, Neison P, Bisbinas I, Armstrong L, Millar AB, Elson CJ (2000) Tumour necrosis factor alpha can contribute to focal loss of cartilage in osteoarthritis. Osteoarthritis Cartilage 8:213–221

    CAS  PubMed  Google Scholar 

  • Wick A, Wick W, Waltenberger J, Weller M, Dichgans J, Schulz JB (2002) Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt. J Neurosci 22:6401–6407

    CAS  PubMed  Google Scholar 

  • Witmer AN, Dai J, Weich HA, Vrensen GF, Schlingemann RO (2002) Expression of vascular endothelial growth factor receptors 1, 2, and 3 in quiescent endothelia. J Histochem Cytochem 50:767–777

    CAS  PubMed  Google Scholar 

  • Zachary I, Gliki G (2001) Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res 49:568–581

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Mrs. S. Bramke for the execution of the immunohistochemical preparations. Mr. Jörg Romahn's and Mrs. Angelika Steuer's technical assistance is gratefully acknowledged. This work was supported by the Deutsche Forschungsgemeinschaft (For 308/2-1; DFG Grant Sh 48/2-4, Sh 48/2-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Schwab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shakibaei, M., Schulze-Tanzil, G., Mobasheri, A. et al. Expression of the VEGF receptor-3 in osteoarthritic chondrocytes: stimulation by interleukin-1β and association with β1-integrins. Histochem Cell Biol 120, 235–241 (2003). https://doi.org/10.1007/s00418-003-0558-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-003-0558-8

Keywords

Navigation