Skip to main content

Advertisement

Log in

A Brillouin microscopy analysis of the crystalline lenses of Chinese adults with myopia

  • Cataract
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

To evaluate lenticular biomechanical and geometric parameters in Chinese adults with myopia and identify relevant factors using Brillouin microscopy (BM) and Pentacam. The biomechanical and geometric properties of the ocular lenses of Chinese adults with myopia were quantified using BM. Anterior segment images were acquired using a Pentacam. Correlated factors including age, sex, spherical equivalent (SE), intraocular pressure (IOP), axial length (AL), white-to-white ratio (WTW), central corneal thickness (CCT), anterior chamber depth (ACD), anterior chamber volume (ACV), and anterior chamber angle (ACA) were analyzed. We studied 65 eyes from 65 participants (mean age, 25.23 ± 6.12 years). Width of Top Plateau (WTP), Width of Bottom Plateau (WBP), Slope of Anterior Cortex (SAC), Slope of Posterior Cortex (SPC), and Height of Plateau (Height) metrics obtained using BM showed mean values of 2.597 ± 0.393 mm, 4.310 ± 0.535 mm, 1.344 ± 0.549 GPa/mm, –1.343 ± 0.480 GPa/mm, and 3.373 ± 0.048 GPa, respectively. No significant correlation was found between these parameters and sex, SE, IOP, CCT, ACA, or Height. Interestingly, WBP (r = 0.467, P < 0.001), SAC (r = 0.412, P = 0.001), and SPC (r = –0.280, P = 0.024) were significantly associated with age, and an age-related increase of WBP (slope of 35.36 ± 10.08 μm per year) was identified. Both ACD and ACV showed significant correlations with SAC (r = 0.329 and 0.380, P = 0.008 and 0.002, respectively), but not with SPC. BM provided a novel perspective on lenticular biomechanical and geometric properties in Chinese adults with myopia, which correlated with age, AL, WTW, ACD, and ACV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are availability from the corresponding author on reasonable request.

Abbreviations

BM:

Brillouin microscopy

IOP:

Intraocular pressure

CCT:

Central corneal thickness

SE:

Spherical equivalent

WTW:

White-to-white ratio

ACD:

Anterior chamber depth

ACA:

Anterior chamber angle

AL:

Axial length

WTP:

Width of Top Plateau

WBP:

Width of Bottom Plateau

Rate:

Rate of Plateau

B-T:

Bottom-Top

SAC:

Slope of Anterior Cortex

SPC:

Slope of Posterior Cortex

Height:

Height of Plateau

References

  1. Wang K, Pierscionek BK (2019) Biomechanics of the human lens and accommodative system: Functional relevance to physiological states. Prog Retin Eye Res 71:114–131

    Article  PubMed  Google Scholar 

  2. Wei L, He W, Meng J, Qian D, Lu Y, Zhu X (2021) Evaluation of the White-to-White Distance in 39,986 Chinese Cataractous Eyes. Invest Ophthalmol Vis Sci 62(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  3. Coleman DJ, Fish SK (2001) Presbyopia, accommodation, and the mature catenary. Ophthalmology 108(9):1544–1551

    Article  CAS  PubMed  Google Scholar 

  4. Li Y, Zhu J, Chen JJ, Yu J, Jin Z, Miao Y, Browne AW, Zhou Q, Chen Z. Simultaneously imaging and quantifying in vivo mechanical properties of crystalline lens and cornea using optical coherence elastography with acoustic radiation force excitation. APL Photonics. 2019 Oct;4(10):106104

  5. Cheng C, Parreno J, Nowak RB, Biswas SK, Wang K, Hoshino M, Uesugi K, Yagi N, Moncaster JA, Lo WK et al (2019) Age-related changes in eye lens biomechanics, morphology, refractive index and transparency. Aging 11(24):12497–12531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hirasawa K, Nakakura S, Nakao Y, Fujino Y, Matsuura M, Murata H, Kiuchi Y, Asaoka R (2018) Changes in Corneal Biomechanics and Intraocular Pressure Following Cataract Surgery. Am J Ophthalmol 195:26–35

    Article  PubMed  Google Scholar 

  7. Fisher RF (1971) The elastic constants of the human lens. J Physiol 212(1):147–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weeber HA, Eckert G, Soergel F, Meyer CH, Pechhold W, van der Heijde RG (2005) Dynamic mechanical properties of human lenses. Exp Eye Res 80(3):425–434

    Article  CAS  PubMed  Google Scholar 

  9. Besner S, Scarcelli G, Pineda R, Yun SH. In Vivo Brillouin Analysis of the Aging Crystalline Lens. Invest Ophthalmol Vis Sci. 2016 Oct 1;57(13):5093-5100

  10. Meng J, Wei L, He W, Qi J, Lu Y, Zhu X. Lens thickness and associated ocular biometric factors among cataract patients in Shanghai. Eye Vis (Lond). 2021 May 31;8(1):22

  11. Henriquez MA, Mejías JA, Rincon M, Izquierdo L, Binder PS (2020) Correlation between lens thickness and lens density in patients with mild to moderate cataracts. Br J Ophthalmol 104(10):1350–1357

    Article  PubMed  Google Scholar 

  12. Ye Y, Zhao J, Niu L, Shi W, Wang X, Zhou X (2022) Long-term evaluation of anterior lens density after implantable collamer lens V4c implantation in patients with myopia over 40 years old. Br J Ophthalmol 106(11):1508–1513

    Article  PubMed  Google Scholar 

  13. Vaughan JM, Randall JT (1980) Brillouin scattering, density and elastic properties of the lens and cornea of the eye. Nature 284(5755):489–491

    Article  CAS  PubMed  Google Scholar 

  14. Ambekar YS, Singh M, Scarcelli G, Rueda EM, Hall BM, Poché RA, Larin KV. Characterization of retinal biomechanical properties using Brillouin microscopy. J Biomed Opt. 2020 Sep;25(9):090502

  15. Zhang H, Asroui L, Tarib I, Dupps WJ Jr, Scarcelli G, Randleman JB (2023) Motion-Tracking Brillouin Microscopy Evaluation of Normal, Keratoconic, and Post-Laser Vision Correction Corneas. Am J Ophthalmol 254:128–140

    Article  PubMed  Google Scholar 

  16. Shao P, Seiler TG, Eltony AM, Ramier A, Kwok SJJ, Scarcelli G, Ii RP, Yun SH (2018) Effects of Corneal Hydration on Brillouin Microscopy In Vivo. Invest Ophthalmol Vis Sci 59(7):3020–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eltony AM, Shao P, Yun SH (2022) Measuring mechanical anisotropy of the cornea with Brillouin microscopy. Nat Commun 13(1):1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yun SH, Chernyak D (2018) Brillouin microscopy: assessing ocular tissue biomechanics. Curr Opin Ophthalmol 29(4):299–305

    Article  PubMed  PubMed Central  Google Scholar 

  19. Prevedel R, Diz-Muñoz A, Ruocco G, Antonacci G (2019) Brillouin microscopy: an emerging tool for mechanobiology. Nat Methods 16(10):969–977

    Article  CAS  PubMed  Google Scholar 

  20. Ambekar YS, Singh M, Zhang J, Nair A, Aglyamov SR, Scarcelli G, Larin KV. Multimodal quantitative optical elastography of the crystalline lens with optical coherence elastography and Brillouin microscopy. Biomed Opt Express. 2020 Mar 17;11(4):2041-2051

  21. Scarcelli G, Kim P, Yun SH (2011) In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy. Biophys J 101(6):1539–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cabeza-Gil I, Grasa J, Calvo B (2021) A numerical investigation of changes in lens shape during accommodation. Sci Rep 11(1):9639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rosales P, Dubbelman M, Marcos S, van der Heijde R (2006) Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging. J Vis 6(10):1057–1067

    Article  PubMed  Google Scholar 

  24. Xin X, Guo Q, Ming S, Liu C, Wang Z, Lei B (2021) High-Resolution Image Analysis Reveals a Decrease in Lens Thickness and Cone Density in a Cohort of Young Myopic Patients. Front Med 8:796778

    Article  Google Scholar 

  25. Wang Y-H, Li X-M (2022) Age-related changes of lens thickness and density in different age phases. Int J Ophthalmol 15(10):1591–1597

    Article  PubMed  PubMed Central  Google Scholar 

  26. Waring GOT, Chang DH, Rocha KM, Gouvea L, Penatti R (2021) Correlation of Intraoperative Optical Coherence Tomography of Crystalline Lens Diameter, Thickness, and Volume with Biometry and Age. Am J Pphthalmol 225:147–156

    Article  Google Scholar 

  27. Muralidharan G, Martínez-Enríquez E, Birkenfeld J, Velasco-Ocana M, Pérez-Merino P, Marcos S (2019) Morphological changes of human crystalline lens in myopia. Biomed Opt Express 10(12):6084–6095

    Article  PubMed  PubMed Central  Google Scholar 

  28. Xie R, Zhou XT, Lu F, Chen M, Xue A, Chen S, Qu J (2009) Correlation between myopia and major biometric parameters of the eye: a retrospective clinical study. Optom Vision Sci : official Public Am Acad Optom 86(5):E503-508

    Article  Google Scholar 

  29. Nangia V, Jonas JB, Sinha A, Matin A, Kulkarni M (2010) Central corneal thickness and its association with ocular and general parameters in Indians: the Central India Eye and Medical Study. Ophthalmology 117(4):705–710

    Article  PubMed  Google Scholar 

  30. Mohamed A, Nandyala S, Ho A, Manns F, Parel JA, Augusteyn RC (2021) Relationship of the cornea and globe dimensions to the changes in adult human crystalline lens diameter, thickness and power with age. Exp Eye Res 209:108653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bassnett S, Šikić H (2017) The lens growth process. Prog Retin Eye Res 60:181–200

    Article  PubMed  PubMed Central  Google Scholar 

  32. Augusteyn RC (2018) On the contribution of the nucleus and cortex to human lens shape and size. Clin Exp Optom 101(1):64–68

    Article  PubMed  Google Scholar 

  33. Díez-Montero C (2023) López-de la Rosa A, López-Miguel A, Maldonado MJ: Relationship between the main components of the crystalline lens and the anterior chamber depth after cataract formation. Graefes Arch Clin Exp Ophthalmol 261(10):2853–2861

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jonas JB, Nangia V, Gupta R, Sinha A, Bhate K (2012) Lens thickness and associated factors. Clin Exp Ophthalmol 40(6):583–590

    Article  PubMed  Google Scholar 

  35. Bolz M, Prinz A, Drexler W, Findl O (2007) Linear relationship of refractive and biometric lenticular changes during accommodation in emmetropic and myopic eyes. Br J Ophthalmol 91(3):360–365

    Article  PubMed  Google Scholar 

  36. Xiang Y, Fu T, Xu Q, Chen W, Chen Z, Guo J, Deng C, Manyande A, Wang P, Zhang H et al (2021) Quantitative analysis of internal components of the human crystalline lens during accommodation in adults. Sci Rep 11(1):6688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shammas HJ, Shammas MC (2015) Measuring the cataractous lens. J Cataract Refract Surg 41(9):1875–1879

    Article  PubMed  Google Scholar 

  38. Catania F, Morenghi E, Rosetta P, Paolo V, Vinciguerra R (2023) Corneal Biomechanics Assessment with Ultra High Speed Scheimpflug Camera in Primary Open Angle Glaucoma Compared with Healthy Subjects: A meta-analysis of the Literature. Curr Eye Res 48(2):161–171

    Article  CAS  PubMed  Google Scholar 

  39. Sun X, Dai Y, Chen Y, Yu DY, Cringle SJ, Chen J, Kong X, Wang X, Jiang C (2017) Primary angle closure glaucoma: What we know and what we don’t know. Prog Retin Eye Res 57:26–45

    Article  PubMed  Google Scholar 

  40. Patel HY, Danesh-Meyer HV (2013) Incidence and management of cataract after glaucoma surgery. Curr Opin Ophthalmol 24(1):15–20

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.cn) for English language editing.

Funding

Zhao received funding from the following sources: National Natural Science Foundation of China (Grant No. 82271119); Shanghai Rising-Star Program (23QA1401000); Healthy Young Talents Project of Shanghai Municipal Health Commission (2022YQ015); Project of Shanghai Science and Technology (Grant No.20410710100, 21Y11909800); Project of Shanghai Xuhui District Science and Technology (2020–015).

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: Xingtao Zhou AND Jing Zhao; Data acquisition: Yanze Yu AND Teruko Fukuyama; Data analysis Yong Ma AND Jian Cao; Data interpretation: Yongle Bao AND Xuan Ding AND Lingling Niu; Manuscript drafting: Yong Ma AND Jian Cao; Manuscript revision: Xingtao Zhou AND Jing Zhao; Final approval: Xingtao Zhou AND Jing Zhao. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xingtao Zhou or Jing Zhao.

Ethics declarations

Ethic approved and consent to participate

The study was approved by the Ethics Committee Office of the Eye and ENT Hospital of Fudan University. All participants provided informed consent to participate in the study (Ethics No.: 20200530).

Consent for publication

Not applicable.

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Cao, J., Yu, Y. et al. A Brillouin microscopy analysis of the crystalline lenses of Chinese adults with myopia. Graefes Arch Clin Exp Ophthalmol (2024). https://doi.org/10.1007/s00417-024-06510-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00417-024-06510-0

Keywords

Navigation