Skip to main content
Log in

Choroidal thickness in juvenile open angle glaucoma: insights from a south asian case–control study

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study is to compare choroidal thickness in juvenile open angle glaucoma (JOAG) and healthy controls using spectral domain optical coherence tomography (SD-OCT) and study its correlations.

Methods

In this case–control study, 56 eyes of 28 JOAG patients and an equal number of controls were recruited. SD-OCT was used to measure the choroidal thickness (ChT), in the macular region at 5 locations: subfoveal, 1500 µm and 3000 µm nasal and temporal to the foveal center, and in the peripapillary region at 6 locations: up to 1500 µm, nasal and temporal to the disc, respectively. The ChT and its correlations with age, intraocular pressure, cup-to-disc ratio, central corneal thickness, mean deviation, and axial length were studied.

Results

The average macular ChT in JOAG was 306.30 ± 56.49 µm vs. 277.12 ± 64.68 µm in controls. The average peripapillary ChT in JOAG was 197.79 ± 44.05 µm vs. 187.24 ± 38.89 µm in controls. The average total ChT (p = 0.042), the average macular ChT (p = 0.022), the subfoveal ChT (p = 0.022), the ChT 1500 µm (p < 0.001), and 3000 µm temporal to the fovea (p = 0.002) were significantly thicker in the JOAG group. In the JOAG group, the average macular ChT had a significant negative correlation with age, whereas axial length was positively correlated with the average peripapillary ChT.

Conclusions

In this South Asian cohort of JOAG, the average total ChT, average macular ChT, subfoveal ChT, and ChT at 1500 µm, and 3000 µm temporal to the fovea were significantly thicker when compared to healthy controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing statement: The data for this study is available from Open Science framework with the DOI: https://doi.org/10.17605/OSF.IO/Z564W and link https://osf.io/z564w/?view_only=5d4d064cf9a844acbd38e641cdb0e85d

References

  1. Selvan H, Gupta S, Wiggs JL et al (2022) Juvenile-onset open-angle glaucoma - A clinical and genetic update. Surv Ophthalmol 67(4):1099–1117. https://doi.org/10.1016/j.survophthal.2021.09.001

    Article  PubMed  Google Scholar 

  2. Yanoff M, Duker JS (2009) Ophthalmology. Third Edition. Mosby: St. Louis.p 12

  3. Ciociola EC, Klifto MR (2022) Juvenile open angle glaucoma: current diagnosis and management. Curr Opin Ophthalmol 1;33(2):97–102. doi: https://doi.org/10.1097/ICU.0000000000000813.

  4. Jafer Chardoub AA, Blair K (2022) Juvenile Glaucoma. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing

  5. Gupta V, Srivastava RM, Rao A et al (2013) Clinical correlates to the goniodysgensis among juvenile-onset primary open-angle glaucoma patients. Graefes Arch Clin Exp Ophthalmol 251(6):1571–1576. https://doi.org/10.1007/s00417-013-2262-2

    Article  PubMed  Google Scholar 

  6. Melamed S, Blum Meirovitch S, Leshno A (2022) Juvenile Open-Angle Glaucoma. In: AlbertDM, Miller JW, Azar DT et al(eds) Albert and Jakobiec's Principles and Practice of Ophthalmology. Springer, Cham https://doi.org/10.1007/978-3-030-42634-7_187

  7. Pathania D, Senthil S, Rao HL et al (2014) Outcomes of trabeculectomy in juvenile open angle glaucoma. Indian J Ophthalmol 62(2):224–228. https://doi.org/10.4103/0301-4738.101074

    Article  PubMed  PubMed Central  Google Scholar 

  8. Qiao Y, Tan C, Chen X, et al (2021) Gonioscopy-assisted transluminal trabeculotomy versus goniotomy with Kahook dual blade in patients with uncontrolled juvenile open-angle glaucoma: a retrospective study. BMC Ophthalmol 16;21(1):395. doi: https://doi.org/10.1186/s12886-021-02159-z

  9. Yeung HH, Walton DS (2010) Goniotomy for juvenile open-angle glaucoma. J Glaucoma 19(1):1–4. https://doi.org/10.1097/IJG.0b013e3181a2fa31

    Article  PubMed  Google Scholar 

  10. Allingham RR, Damji KF, Freedman S, et al (2011) Shields Textbook of Glaucoma. Sixth Edition. Wolters Kluwer Health/Lippincott Williams & Wilkins; New DehliP 59–720

  11. Jonas JB (2014) Glaucoma and choroidal thickness. J Ophthalmic Vis Res 9(2):151–153

    PubMed  PubMed Central  Google Scholar 

  12. Wang W, Zhang X (2014) Choroidal thickness and primary open-angle glaucoma: a cross-sectional study and meta-analysis. Invest Ophthalmol Vis Sci 28;55(9):6007–14. doi: https://doi.org/10.1167/iovs.14-14996

  13. Plange N, Kaup M, Weber A et al (2004) Fluorescein Filling Defects and Quantitative Morphologic Analysis ofthe Optic Nerve Head in Glaucoma. Arch Ophthalmol 122(2):195–201. https://doi.org/10.1001/archopht.122.2.195

    Article  PubMed  Google Scholar 

  14. Spaeth G (1975) Fluorescein angiography: its contributions towards understanding themechanisms of visual field loss in glaucoma. Trans Am Ophthalmol Soc 73491- 553

  15. Schwartz B (1994) Circulatory defects of the optic disc and retina in ocular hypertensionand high pressure open-angle glaucoma. Surv Ophthalmol 38supplS23- S34

  16. Nadeem S (2023) Macular choroidal thickness and correlations in a healthy pediatric South Asian cohort: A spectral domain optical coherence tomography study. J Biophotonics 16(7):e202300039. https://doi.org/10.1002/jbio.202300039

    Article  PubMed  Google Scholar 

  17. Goharian I, Sehi M (2016) Is There Any Role for the Choroid in Glaucoma? J Glaucoma 25(5):452–458. https://doi.org/10.1097/IJG.0000000000000166

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lejoyeux R, Benillouche J, Ong J et al (2022) Choriocapillaris: Fundamentals and advancements. Prog Retin Eye Res 87:100997. https://doi.org/10.1016/j.preteyeres.2021.100997

    Article  PubMed  Google Scholar 

  19. Forrester JV, Dick AD, Paul G, et al (2016) Chapter 4 - Biochemistry and cell biology. In: The Eye. (Fourth Edition) Saunders, Philadelphia, PA, pp 157–268 https://doi.org/10.1016/B978-0-7020-5554-6.00004-6

  20. Ju WK, Perkins GA, Kim KY et al (2023) Glaucomatous optic neuropathy: Mitochondrial dynamics, dysfunction and protection in retinal ganglion cells. Prog Retin Eye Res 95:101136. https://doi.org/10.1016/j.preteyeres.2022.101136

    Article  CAS  PubMed  Google Scholar 

  21. Schuster AK, Erb C, Hoffmann EM, et al (2020) The Diagnosis and Treatment of Glaucoma. Dtsch Arztebl Int 27;117(13):225–234. doi: https://doi.org/10.3238/arztebl.2020.0225.

  22. Wallman J, Wildsoet C, Xu A et al (1995) Moving the retina: choroidal modulation of refractive state. Vision Res 35(1):37–50. https://doi.org/10.1016/0042-6989(94)e0049-q

    Article  CAS  PubMed  Google Scholar 

  23. Lam K, Lawlor M (2021) Anatomy of the Aqueous Outflow Drainage Pathways. In: Sng CCA, Barton K (eds) Minimally Invasive Glaucoma Surgery. Springer, Singapore, pp 11– 19 https://doi.org/10.1007/978-981-15-5632-6_2

  24. Spraul CW, Lang GE, Lang GK et al (2003) Morphometric changes of the choriocapillaris and the choroidal vasculature in eyes with advanced glaucomatous changes. Vision Res 42:923–932

    Article  Google Scholar 

  25. Yin ZQ, Vaegan MTJ et al (1997) Widespread choroidal insufficiency in primary open-angle glaucoma. J Glaucoma 6(1):23–32

    Article  CAS  PubMed  Google Scholar 

  26. Duijm HF, van den Berg TJ, Greve EL (1997) Choroidal haemodynamics in glaucoma. Br J Ophthalmol 81:735–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Spraul CW, Lang GE, Lang GK et al (2002) Morphometric changes of the choriocapillaris and the choroidal vasculature in eyes with advanced glaucomatous changes. Vision Res 42(7):923–932. https://doi.org/10.1016/s0042-6989(02)00022-6

    Article  PubMed  Google Scholar 

  28. Marangoni D, Falsini B, Colotto A et al (2012) Subfoveal choroidal blood flow and central retinal function in early glaucoma. Acta Ophthalmol 90(4):e288–e294. https://doi.org/10.1111/j.1755-3768.2011.02340.x

    Article  PubMed  Google Scholar 

  29. Jonas JB, Steinmetz P, Forster TM et al (2015) Choroidal Thickness in Open-angle Glaucoma. J Glaucoma 24(8):619–623. https://doi.org/10.1097/IJG.0000000000000063

    Article  PubMed  Google Scholar 

  30. Samra WA, Pournaras C, Riva C et al (2013) Choroidal hemodynamic in myopic patients with and without primary open-angle glaucoma. Acta Ophthalmol 91(4):371–375. https://doi.org/10.1111/j.1755-3768.2012.02386.x

    Article  PubMed  Google Scholar 

  31. Abegão Pinto L, Willekens K, Van Keer K et al (2016) Ocular blood flow in glaucoma - the Leuven Eye Study. Acta Ophthalmol 94(6):592–598. https://doi.org/10.1111/aos.12962

    Article  PubMed  Google Scholar 

  32. Findl O, Rainer G, Dallinger S et al (2000) Assessment of optic disk blood flow in patients with open-angle glaucoma. Am J Ophthalmol 130(5):589–596. https://doi.org/10.1016/s0002-9394(00)00636-x

    Article  CAS  PubMed  Google Scholar 

  33. Bayraktar S, İpek A, Takmaz T et al (2022) Ocular blood flow and choroidal thickness in ocular hypertension. Int Ophthalmol 42(5):1357–1368. https://doi.org/10.1007/s10792-021-02123-2

    Article  PubMed  Google Scholar 

  34. Chen X, Wang X, Hu X et al (2020) The evaluation of juvenile ocular hypertension by optical coherence tomography angiography. BMC Ophthalmol 20:423. https://doi.org/10.1186/s12886-020-01641-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Abou Shousha MA, Nabil KM (2017) Comparison between choroidal thickness in normal and glaucomatous eyes using spectral-domain optical coherence tomography. Delta J Ophthalmol 18:104–107

    Article  Google Scholar 

  36. Zhang Z, Yu M, Wang F et al (2016) Choroidal Thickness and Open-Angle Glaucoma: A Meta-Analysis and Systematic Review. J Glaucoma 25(5):e446–e454. https://doi.org/10.1097/IJG.0000000000000275

    Article  PubMed  Google Scholar 

  37. Verticchio Vercellin A, Harris A, Stoner AM, et al (2022) Choroidal Thickness and Primary Open-Angle Glaucoma-A Narrative Review. J Clin Med 23;11(5):1209. doi: https://doi.org/10.3390/jcm11051209

  38. Maul EA, Friedman DS, Chang DS et al (2011) Choroidal thickness measured by spectral domain optical coherence tomography: factors affecting thickness in glaucoma patients. Ophthalmology 118(8):1571–1579. https://doi.org/10.1016/j.ophtha.2011.01.016

    Article  PubMed  Google Scholar 

  39. Li F, Huo Y, Ma L et al (2021) Clinical Analysis of Macular Choroidal Thickness in Pseudoexfoliative Glaucoma and Primary Open-Angle Glaucoma. J Ophthalmol 16(2021):3897952. https://doi.org/10.1155/2021/3897952

    Article  Google Scholar 

  40. Hosseini H, Nilforushan N, Moghimi S et al (2014) Peripapillary and macular choroidal thickness in glaucoma. J Ophthalmic Vis Res 9(2):154–161

    PubMed  PubMed Central  Google Scholar 

  41. Wang YX, Xu L, Shao L, et al (2014) Subfoveal choroidal thickness and glaucoma. The Beijing Eye Study 2011. PLoS One 11;9(9):e107321. doi: https://doi.org/10.1371/journal.pone.0107321

  42. Ehrlich JR, Peterson J, Parlitsis G et al (2011) Peripapillary choroidal thickness in glaucoma measured with optical coherence tomography. Exp Eye Res 92(3):189–194. https://doi.org/10.1016/j.exer.2011.01.002

    Article  CAS  PubMed  Google Scholar 

  43. Mwanza JC, Hochberg JT, Banitt MR, et al (2011) Lack of association between glaucoma and macular choroidal thickness measured with enhanced depth-imaging optical coherence tomography. Invest Ophthalmol Vis Sci 18;52(6):3430–5. doi: https://doi.org/10.1167/iovs.10-6600

  44. Kutluksaman B, Yavas GF, Inan S, et al (2019) Choroidal Thickness and its Correlations with Ocular Parameters in Primary Open-angle Glaucoma. Beyoglu Eye J 25;4(3):179–189. doi: https://doi.org/10.14744/bej.2019.86570

  45. Sacconi R, Deotto N, Merz T et al (2017) SD-OCT Choroidal Thickness in Advanced Primary Open-Angle Glaucoma. J Glaucoma 26(6):523–527. https://doi.org/10.1097/IJG.0000000000000661

    Article  PubMed  Google Scholar 

  46. Cennamo G, Finelli M, Iaccarino G et al (2012) Choroidal thickness in open-angle glaucoma measured by spectral-domain scanning laser ophthalmoscopy/optical coherence tomography. Ophthalmologica 228(1):47–52. https://doi.org/10.1159/000336903

    Article  PubMed  Google Scholar 

  47. Roberts KF, Artes PH, O’Leary N et al (2012) Peripapillary choroidal thickness in healthy controls and patients with focal, diffuse, and sclerotic glaucomatous optic disc damage. Arch Ophthalmol 130(8):980–986. https://doi.org/10.1001/archophthalmol.2012.371

    Article  PubMed  Google Scholar 

  48. Nakakura S, Yamamoto M, Terao E, et al (2014) The whole macular choroidal thickness in subjects with primary open angle glaucoma. PLoS One 28;9(10):e110265. doi: https://doi.org/10.1371/journal.pone.0110265.

  49. Lin Z, Huang S, Huang P, et al (2017) The diagnostic use of choroidal thickness analysis and its correlation with visual field indices in glaucoma using spectral domain optical coherence tomography. PLoS One 13;12(12):e0189376. doi: https://doi.org/10.1371/journal.pone.0189376.

  50. Li F, Huo Y, Ma L et al (2021) Correlation Analysis between Macular Choroidal Thickness and Visual Field Mean Defect in Primary Open-Angle Glaucoma. J Ophthalmol 9(2021):5574950. https://doi.org/10.1155/2021/5574950

    Article  Google Scholar 

Download references

Funding

No funding was provided for this research.

Author information

Authors and Affiliations

Authors

Contributions

Manuscript writing, supervision, data curation, formal analysis.

Corresponding author

Correspondence to Sana Nadeem.

Ethics declarations

Ethics approval and consent to participate

The Ethical Review Committee of Fauji Foundation Hospital, Rawalpindi, Pakistan granted approval for this study which is according to the Declaration of Helsinki [492/RC/FFH/RWP].

Consent for publication

Informed consent was obtained from the patients.

Competing interests

The author has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file2 (PDF 131 kb)

Supplementary file1 (DOCX 15 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadeem, S. Choroidal thickness in juvenile open angle glaucoma: insights from a south asian case–control study. Graefes Arch Clin Exp Ophthalmol (2024). https://doi.org/10.1007/s00417-024-06495-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00417-024-06495-w

Keywords

Navigation