Skip to main content

Advertisement

Log in

Impact of the preoperative cylinder on astigmatism correction in femtosecond lenticule extraction (FLEX): a prospective observational study

  • Refractive Surgery
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To explore the impact of the preoperative manifest cylinder on astigmatism correction via femtosecond lenticule extraction (FLEX), or small incision lenticule extraction (SMILE).

Methods

This was a prospective observational study. Eyes were categorized into mild (n = 88), moderate (n = 46), and severe (n = 53) astigmatism groups, based on the preoperative manifest cylinder. Vector analysis was conducted with the back vertex distance set at 12 mm. The primary outcome was the correction index (CI), with secondary outcomes including the safety, efficacy, predictability, and vectoral alterations related to FLEX.

Results

The average target-induced astigmatism was 0.45 ± 0.20 D, 0.95 ± 0.17 D, and 1.99 ± 0.65 D in the three groups (P < 0.001), and the average CI was 1.12± 0.05, 1.01 ± 0.03, and 0.95 ± 0.02 (P = 0.020), with the severe astigmatism group displaying a notably lower CI. The efficacy, safety, predictability, or stability of FLEX did not demonstrate any significant differences among the three groups. The CIs exhibited a significant difference in eyes with with-the-rule (WTR) astigmatism and against-the-rule (ATR) astigmatism from the mild to severe astigmatism group. In eyes with oblique astigmatism, the average CI exceeded one.

Conclusion

Patients with manifest cylinder exceeding 1.25 D have a heightened risk of under-correction in WTR and ATR astigmatism compared to those with mild astigmatism, and mild over-correction may occur in cases of oblique astigmatism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Frings A, Richard G, Steinberg J, Skevas C, Druchkiv V, Katz T, Linke SJ (2015) LASIK for spherical refractive myopia: effect of topographic astigmatism (ocular residual astigmatism, ORA) on refractive outcome. PLoS One 10:e0124313. https://doi.org/10.1371/journal.pone.0124313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang J, Wu Y, Sharma B, Gupta R, Jawla S, Bullimore MA (2023) Epidemiology and burden of astigmatism: a systematic literature review. Optom Vis Sci 100:218

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mozayan E, Lee JK (2014) Update on astigmatism management. Curr Opin Ophthalmol 25:286–290. https://doi.org/10.1097/icu.0000000000000068

    Article  PubMed  Google Scholar 

  4. Sigireddi RR, Weikert MP (2020) How much astigmatism to treat in cataract surgery. Curr Opin Ophthalmol 31:10–14. https://doi.org/10.1097/icu.0000000000000627

    Article  PubMed  Google Scholar 

  5. Li M, Li M, Chen Y, Miao H, Yang D, Ni K, Zhou X (2019) Five-year results of small incision lenticule extraction (SMILE) and femtosecond laser LASIK (FS-LASIK) for myopia. Acta Ophthalmol 97:e373–e380. https://doi.org/10.1111/aos.14017

    Article  PubMed  Google Scholar 

  6. Chang JSM (2018) Femtosecond laser-assisted astigmatic keratotomy: a review. Eye Vision (Lond, England) 5:6. https://doi.org/10.1186/s40662-018-0099-9

    Article  Google Scholar 

  7. Han T, Xu Y, Han X, Zeng L, Shang J, Chen X, Zhou X (2019) Three-year outcomes of small incision lenticule extraction (SMILE) and femtosecond laser-assisted laser in situ keratomileusis (FS-LASIK) for myopia and myopic astigmatism. Br J Ophthalmol 103:565–568. https://doi.org/10.1136/bjophthalmol-2018-312140

    Article  PubMed  Google Scholar 

  8. Gauvin M, Wallerstein A (2018) AstigMATIC: an automatic tool for standard astigmatism vector analysis. BMC Ophthalmol 18:255. https://doi.org/10.1186/s12886-018-0920-1

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ivarsen A, Hjortdal J (2014) Correction of myopic astigmatism with small incision lenticule extraction. J Refract Surg 30:240–247. https://doi.org/10.3928/1081597X-20140320-02

    Article  PubMed  Google Scholar 

  10. Watanabe K, Negishi K, Kawai M, Torii H, Kaido M, Tsubota K (2013) Effect of experimentally induced astigmatism on functional, conventional, and low-contrast visual acuity. J Refract Surg 29:19–24. https://doi.org/10.3928/1081597X-20121211-01

    Article  PubMed  Google Scholar 

  11. Chow SSW, Chow LLW, Lee CZ, Chan TCY (2019) Astigmatism correction using SMILE. Asia Pac J Ophthalmol (Phila) 8:391–396. https://doi.org/10.1097/01.APO.0000580140.74826.f5

    Article  PubMed  Google Scholar 

  12. Primavera L, Canto-Cerdan M, Alio JL, Alio Del Barrio JL (2022) Influence of age on small incision lenticule extraction outcomes. Br J Ophthalmol 106:341–348. https://doi.org/10.1136/bjophthalmol-2020-316865

    Article  PubMed  Google Scholar 

  13. Sekundo W, Kunert KS, Blum M (2011) Small incision corneal refractive surgery using the small incision lenticule extraction (SMILE) procedure for the correction of myopia and myopic astigmatism: results of a 6 month prospective study. Br J Ophthalmol 95:335–339. https://doi.org/10.1136/bjo.2009.174284

    Article  PubMed  Google Scholar 

  14. Dubbelman M, Sicam VA, Van der Heijde GL (2006) The shape of the anterior and posterior surface of the aging human cornea. Vis Res 46:993–1001. https://doi.org/10.1016/j.visres.2005.09.021

    Article  CAS  PubMed  Google Scholar 

  15. Qian Y, Huang J, Zhou X, Wang Y (2015) Comparison of femtosecond laser small-incision lenticule extraction and laser-assisted subepithelial keratectomy to correct myopic astigmatism. J Cataract Refract Surg 41:2476–2486. https://doi.org/10.1016/j.jcrs.2015.05.043

    Article  PubMed  Google Scholar 

  16. Ivarsen A, Gyldenkerne A, Hjortdal J (2018) Correction of astigmatism with small-incision lenticule extraction: impact of against-the-rule and with-the-rule astigmatism. J Cataract Refract Surg 44:1066–1072. https://doi.org/10.1016/j.jcrs.2018.06.029

    Article  PubMed  Google Scholar 

  17. Perez-Izquierdo R, Rodriguez-Vallejo M, Matamoros A, Martinez J, Garzon N, Poyales F, Fernandez J (2019) Influence of preoperative astigmatism type and magnitude on the effectiveness of SMILE correction. J Refract Surg 35:40–47. https://doi.org/10.3928/1081597X-20181127-01

    Article  PubMed  Google Scholar 

  18. Alpins NA (1993) A new method of analyzing vectors for changes in astigmatism. J Cataract Refract Surg 19:524–533. https://doi.org/10.1016/s0886-3350(13)80617-7

    Article  CAS  PubMed  Google Scholar 

  19. Alpins N (2001) Astigmatism analysis by the Alpins method. J Cataract Refract Surg 27:31–49

    Article  CAS  PubMed  Google Scholar 

  20. Zhang J, Wang Y, Wu W, Xu L, Li X, Dou R (2015) Vector analysis of low to moderate astigmatism with small incision lenticule extraction (SMILE): results of a 1-year follow-up. BMC Ophthalmol 15:8. https://doi.org/10.1186/1471-2415-15-8

    Article  PubMed  PubMed Central  Google Scholar 

  21. Khalifa MA, Ghoneim AM, Shaheen MS, Pinero DP (2017) Vector analysis of astigmatic changes after small-incision lenticule extraction and wavefront-guided laser in situ keratomileusis. J Cataract Refract Surg 43:819–824. https://doi.org/10.1016/j.jcrs.2017.03.033

    Article  PubMed  Google Scholar 

  22. Taneri S, Kiessler S, Rost A, Schultz T, Dick HB (2019) Small-incision lenticule extraction for the correction of myopic astigmatism. J Cataract Refract Surg 45:62–71. https://doi.org/10.1016/j.jcrs.2018.08.030

    Article  PubMed  Google Scholar 

  23. Dishler JG, Slade S, Seifert S, Schallhorn SC (2020) Small-incision lenticule extraction (SMILE) for the correction of myopia with astigmatism: outcomes of the United States Food and Drug Administration Premarket Approval clinical trial. Ophthalmology 127:1020–1034. https://doi.org/10.1016/j.ophtha.2020.01.010

    Article  PubMed  Google Scholar 

  24. Moshirfar M, Thomson AC, West WB Jr, Hall MN, McCabe SE, Thomson RJ, Ronquillo YC, Hoopes PC (2020) Initial single-site experience using SMILE for the treatment of astigmatism in myopic eyes and comparison of astigmatic outcomes with existing literature. Clin Ophthalmol 14:3551–3562. https://doi.org/10.2147/opth.S276899

    Article  PubMed  PubMed Central  Google Scholar 

  25. Alpins N (1997) New method of targeting vectors to treat astigmatism. J Cataract Refract Surg 23:65–75

    Article  CAS  PubMed  Google Scholar 

  26. Kunert KS, Russmann C, Blum M, Sluyterman VLG (2013) Vector analysis of myopic astigmatism corrected by femtosecond refractive lenticule extraction. J Cataract Refract Surg 39:759–769. https://doi.org/10.1016/j.jcrs.2012.11.033

    Article  PubMed  Google Scholar 

  27. Kwak JJ, Jun I, Kim EK, Seo KY, Kim TI (2020) Clinical outcomes of small incision lenticule extraction in myopia: study of vector parameters and corneal aberrations. Korean J Ophthalmol 34:76–84. https://doi.org/10.3341/kjo.2019.0109

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sideroudi H, Lazaridis A, Messerschmidt-Roth A, Labiris G, Kozobolis V, Sekundo W (2018) Corneal irregular astigmatism and curvature changes after small incision lenticule extraction: three-year follow-up. Cornea 37:875–880. https://doi.org/10.1097/ICO.0000000000001532

    Article  PubMed  Google Scholar 

  29. Kamiya K, Shimizu K, Yamagishi M, Igarashi A, Kobashi H (2015) Anterior and posterior corneal astigmatism after refractive lenticule extraction for myopic astigmatism. J Ophthalmol 2015:915853. https://doi.org/10.1155/2015/915853

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sideroudi H, Sekundo W, Kozobolis V, Messerschmidt-Roth A, Lazaridis A (2019) Fourier analysis of corneal irregular astigmatism after small incision lenticule extraction and comparison to femtosecond laser-assisted laser in situ keratomileusis. Cornea 0:1–7

    Google Scholar 

  31. Artal P, Guirao A, Berrio E, Williams DR (2001) Compensation of corneal aberrations by the internal optics in the human eye. J Vis 1:1–8. https://doi.org/10.1167/1.1.1

    Article  CAS  PubMed  Google Scholar 

  32. Chan TCY, Wan KH, Zhang L, Wang Y (2019) Impact of ocular residual astigmatism on predictability of myopic astigmatism correction after small-incision lenticule extraction. J Cataract Refract Surg 45:525–526. https://doi.org/10.1016/j.jcrs.2019.01.028

    Article  PubMed  Google Scholar 

  33. Alpins N, Stamatelatos G (2007) Customized photoastigmatic refractive keratectomy using combined topographic and refractive data for myopia and astigmatism in eyes with forme fruste and mild keratoconus. J Cataract Refract Surg 33:591–602

    Article  PubMed  Google Scholar 

  34. Arbelaez MC, Alpins N, Verma S, Stamatelatos G, Arbelaez JG, Arba-Mosquera S (2017) Clinical outcomes of laser in situ keratomileusis with an aberration-neutral profile centered on the corneal vertex comparing vector planning with manifest refraction planning for the treatment of myopic astigmatis. J Cataract Refract Surg 43:1504–1514

    Article  PubMed  Google Scholar 

  35. Chen P, Ye Y, Yu N, Zhang X, He J, Zheng H, Wei H, Zhuang J, Yu K (2019) Comparison of small incision lenticule extraction surgery with and without cyclotorsion error correction for patients with astigmatism. Cornea 38:723–729. https://doi.org/10.1097/ico.0000000000001937

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hou X, Du K, Wen D, Hu S, Hu T, Li C, Tang Y, Wu X (2021) Early visual quality outcomes after small-incision lenticule extraction surgery for correcting high myopic astigmatism. BMC Ophthalmol 21:48. https://doi.org/10.1186/s12886-021-01807-8

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ganesh S, Brar S, Pawar A (2017) Results of intraoperative manual cyclotorsion compensation for myopic astigmatism in patients undergoing small incision lenticule extraction (SMILE). J Refract Surg 33:506–512. https://doi.org/10.3928/1081597X-20170328-01

    Article  PubMed  Google Scholar 

  38. Prickett AL, Bui K, Hallak J, Bakhtiyari P, de la Cruz J, Azar DT, Chamon W (2015) Cyclotorsional and non-cyclotorsional components of eye rotation observed from sitting to supine position. Br J Ophthalmol 99:49–53. https://doi.org/10.1136/bjophthalmol-2014-304975

    Article  PubMed  Google Scholar 

  39. Alpins NA (1997) Vector analysis of astigmatism changes by flattening, steepening, and torque. J Cataract Refract Surg 23:1503–1514. https://doi.org/10.1016/s0886-3350(97)80021-1

    Article  CAS  PubMed  Google Scholar 

  40. Xu J, Liu F, Liu M, Yang X, Weng S, Lin L, Lin H, Xie Y, Liu Q (2019) Effect of cyclotorsion compensation with a novel technique in small incision lenticule extraction surgery for the correction of myopic astigmatism. J Refract Surg 35:301–308. https://doi.org/10.3928/1081597X-20190402-01

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

XM, HC, and JD: conception and design; XM and HC: data acquisition and analysis; XM and SJ: writing the manuscript and data interpretation; XM, HC, SJ, and JD: critical revision of the manuscript. All authors gave final approval of the manuscript.

Corresponding author

Correspondence to Jinhui Dai.

Ethics declarations

Ethics approval

The study adhered to the Declaration of Helsinki, and written informed consent was obtained from all the patients. The ethics committee approved this prospective study of the Eye and Ear, Nose, and Throat (EENT) Hospital of Fudan University (No. KJ 2008-10).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, X., Chen, H., Zhao, Y. et al. Impact of the preoperative cylinder on astigmatism correction in femtosecond lenticule extraction (FLEX): a prospective observational study. Graefes Arch Clin Exp Ophthalmol 262, 631–639 (2024). https://doi.org/10.1007/s00417-023-06211-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-023-06211-0

Keywords

Navigation