Skip to main content

Advertisement

Log in

Fractal analysis of the macular region in healthy eyes using swept-source optical coherence tomography angiography

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

This cross-sectional observational study evaluated the relationship between retinal vascular fractal dimension (FD) and age, as well as other vascular parameters in healthy eyes using swept-source optical coherence tomography angiography (SS-OCTA).

Methods

The study cohort consisted of 222 eyes of 116 healthy participants with no ocular or systemic disease. SS-OCTA images were captured and analyzed using the Plex Elite 9000 and software tools available in the advanced retinal imaging (ARI) network hub. The retinal vascular layers were defined by the instrument's automatic retinal layer segmentation. The fractal analysis was performed on the superficial capillary plexus (SCP), deep capillary plexus (DCP), and the whole retina. Grayscale OCTA images were standardized and binarized using ImageJ and fractal box-counting analyses were performed using Fractalyse software. Pearson’s correlation was used to analyze the correlation between FD and retinal vascular parameters.

Results

The results showed that FD values were significantly higher in the 6 mm ring and the whole 6 × 6 scan region when compared to the 1 mm ETDRS central subfield. The correlation between age and FD was weak with a significant positive correlation between age and FD of the SCP in the 6 mm ring and between age and FD of the DCP in the 1 mm ring. Overall, differences in FD values in these healthy eyes were extremely small regardless of age or macular location.

Conclusion

FD values in normal eyes show little variation with age and are relatively stable across the macula. This suggests that FD values may not need adjustment for age or location when evaluated in the context of retinal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Code availability

Not applicable.

References

  1. Mandelbrot BB (1983) The fractal geometry of nature. Macmillan. W. H. Freeman & Co, New York

  2. Mandelbrot B (1967) How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 5:636–638. https://doi.org/10.1126/science.156.3775.636

    Article  Google Scholar 

  3. Losa GA (2009) The fractal geometry of life. Riv Biol 102:29–59

    PubMed  Google Scholar 

  4. Mandelbrot BB (1983) The fractal geometry of nature. WH Freeman, New York, pp 151–165

  5. Reichenbach A, Siegel A, Senitz D et al (1992) A comparative fractal analysis of various mammalian astroglial cell types. Neuroimage 1:69–77. https://doi.org/10.1016/1053-8119(92)90008-b

    Article  CAS  PubMed  Google Scholar 

  6. Tomomitsu T, Mimura H, Murase K et al (2005) [Fractal analysis of trabecular architecture: with special reference to slice thickness and pixel size of the image]. Nihon Hoshasen Gijutsu Gakkai Zasshi 61:819–825. https://doi.org/10.6009/jjrt.kj00003326842.

  7. Talebinejad M, Chan AD, Miri A et al (2009) Fractal analysis of surface electromyography signals: a novel power spectrum-based method. J Electromyogr Kinesiol 19:840–850. https://doi.org/10.1016/j.jelekin.2008.05.004

    Article  PubMed  Google Scholar 

  8. Ristanović D, Stefanović BD, Puškaš N (2014) Fractal analysis of dendrite morphology using modified box-counting method. Neurosci Res 84:64–67. https://doi.org/10.1016/j.neures.2014.04.005

    Article  PubMed  Google Scholar 

  9. Jurczyszyn K, Kozakiewicz M (2020) (2020) Application of Texture and Fractal Dimension Analysis to Estimate Effectiveness of Oral Leukoplakia Treatment Using an Er:YAG Laser-A Prospective Study. Materials (Basel) 13:3614. https://doi.org/10.3390/ma13163614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Murray CD (1926) The Physiological Principle of Minimum Work: I. The Vascular System and the Cost of Blood Volume. Proc Natl Acad Sci U S A 12:207–214. https://doi.org/10.1073/pnas.12.3.207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Murray CD (1926) THE PHYSIOLOGICAL PRINCIPLE OF MINIMUM WORK APPLIED TO THE ANGLE OF BRANCHING OF ARTERIES. J Gen Physiol 9:835–841. https://doi.org/10.1085/jgp.9.6.835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Masters BR (1990) Fractal analysis of human retinal blood vessel patterns: developmental and diagnostic aspects. In: Masters BR (ed) Noninvasive Diagnostic Techniques in Ophthalmology. Springer Verlag, New York, pp 515–527

    Chapter  Google Scholar 

  13. Family F, Masters BR, Platt DE (1989) Fractal pattern formation in human retinal vessels. Physica D: Non-linear phenomena 38(1–3):98–103

    Article  Google Scholar 

  14. Mainster MA (1990) The fractal properties of retinal vessels: embryological and clinical implications. Eye (Lond) 4:235–241. https://doi.org/10.1038/eye.1990.33

    Article  PubMed  Google Scholar 

  15. Cheung CY, Thomas GN, Tay W et al (2012) Retinal vascular fractal dimension and its relationship with cardiovascular and ocular risk factors. Am J Ophthalmol 154:663-674.e1. https://doi.org/10.1016/j.ajo.2012.04.016

    Article  PubMed  Google Scholar 

  16. Liew G, Wang JJ, Cheung N et al (2008) The retinal vasculature as a fractal: methodology, reliability, and relationship to blood pressure. Ophthalmology 115:1951–1956. https://doi.org/10.1016/j.ophtha.2008.05.029

    Article  PubMed  Google Scholar 

  17. Cheung N, Donaghue KC, Liew G et al (2009) Quantitative assessment of early diabetic retinopathy using fractal analysis. Diabetes Care 32:106–110. https://doi.org/10.2337/dc08-1233

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sng CC, Sabanayagam C, Lamoureux EL et al (2010) Fractal analysis of the retinal vasculature and chronic kidney disease. Nephrol Dial Transplant 25:2252–2258. https://doi.org/10.1093/ndt/gfq007

    Article  PubMed  Google Scholar 

  19. Cheung N, Liew G, Lindley RI et al (2010) Multi-Center Retina & Stroke Study Collaborative Group. Retinal fractals and acute lacunar stroke. Ann Neurol 68:107–111. https://doi.org/10.1002/ana.22011

    Article  PubMed  Google Scholar 

  20. Kawasaki R, CheAzemin MZ, Kumar DK et al (2011) (2011) Fractal dimension of the retinal vasculature and risk of stroke: a nested case-control study. Neurology 76:1766–1767. https://doi.org/10.1212/WNL.0b013e31821a7d7d

    Article  CAS  PubMed  Google Scholar 

  21. Liew G, Mitchell P, Rochtchina E et al (2011) Fractal analysis of retinal microvasculature and coronary heart disease mortality. Eur Heart J 32:422–429. https://doi.org/10.1093/eurheartj/ehq431

    Article  PubMed  Google Scholar 

  22. Fan WY, Fleming A, Robertson G et al (2020) Fractal analysis of retinal vasculature in normal subjects on ultra-wide field fluorescein angiography. Int J Ophthalmol 13:1109–1114. https://doi.org/10.18240/ijo.2020.07.15

    Article  PubMed  PubMed Central  Google Scholar 

  23. Spaide RF, Klancnik JM Jr, Cooney MJ (2015) Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol 133:45–50

    Article  PubMed  Google Scholar 

  24. Zahid S, Dolz-Marco R, Freund KB et al (2016) Fractal Dimensional Analysis of Optical Coherence Tomography Angiography in Eyes with Diabetic Retinopathy. Invest Ophthalmol Vis Sci 57:4940–4947. https://doi.org/10.1167/iovs.16-19656

    Article  PubMed  Google Scholar 

  25. Bhardwaj S, Tsui E, Zahid S et al (2018) Value of fractal analysis of optical coherence tomography angiography in various stages of diabetic retinopathy. Retina 38:1816–1823. https://doi.org/10.1097/IAE.0000000000001774

    Article  PubMed  Google Scholar 

  26. Azemin MZ, Kumar DK, Wong TY et al (2012) Age-related rarefaction in the fractal dimension of retinal vessel. Neurobiol Aging 33:194.e1–4. https://doi.org/10.1016/j.neurobiolaging.2010.04.010

    Article  PubMed  Google Scholar 

  27. Masters BR (2004) Fractal analysis of the vascular tree in the human retina. Annu Rev Biomed Eng 6:427–452

    Article  CAS  PubMed  Google Scholar 

  28. Landini G, Misson GP, Murray PI (1993) Fractal analysis of the normal human retinal fluorescein angiogram. Curr Eye Res 12:23–27. https://doi.org/10.3109/02713689308999492

    Article  CAS  PubMed  Google Scholar 

  29. Gadde SG, Anegondi N, Bhanushali D et al (2016) Quantification of Vessel Density in Retinal Optical Coherence Tomography Angiography Images Using Local Fractal Dimension. Invest Ophthalmol Vis Sci 57:246–252. https://doi.org/10.1167/iovs.15-18287

    Article  CAS  PubMed  Google Scholar 

  30. de Mendonça MB, de Amorim Garcia CA, NogueiraRde A et al (2007) Análise fractal da vasculatura retínica: métodos de segmentação e de cálculo dimensional [Fractal analysis of retinal vascular tree: segmentation and estimation methods]. Arq Bras Oftalmol 70:413–422. https://doi.org/10.1590/s0004-27492007000300006

    Article  PubMed  Google Scholar 

  31. Cheung N, Islam FM, Saw SM et al (2007) Distribution and associations of retinal vascular caliber with ethnicity, gender, and birth parameters in young children. Invest Ophthalmol Vis Sci 48:1018–1024. https://doi.org/10.1167/iovs.06-0978

    Article  PubMed  Google Scholar 

  32. Li X, Wong WL, Cheung CY et al (2013) Racial differences in retinal vessel geometric characteristics: a multiethnic study in healthy Asians. Invest Ophthalmol Vis Sci 54:3650–3656. https://doi.org/10.1167/iovs.12-11126

    Article  PubMed  Google Scholar 

  33. Owen CG, Rudnicka AR, Nightingale CM et al (2011) Retinal arteriolar tortuosity and cardiovascular risk factors in a multi-ethnic population study of 10-year-old children; the Child Heart and Health Study in England (CHASE). Arterioscler Thromb Vasc Biol 31:1933–1938. https://doi.org/10.1161/ATVBAHA.111.225219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cheung CY, Ikram MK, Sabanayagam C et al (2012) Retinal microvasculature as a model to study the manifestations of hypertension. Hypertension 60:1094–1103. https://doi.org/10.1161/HYPERTENSIONAHA.111.189142

    Article  CAS  PubMed  Google Scholar 

  35. Hu R, Ding C (2016) Quantification of Vessel Density in Retinal Optical Coherence Tomography Angiography Images Using Local Fractal Dimension. Invest Ophthalmol Vis Sci 57:2262. https://doi.org/10.1167/iovs.16-19256. (PMID: 27124320)

    Article  PubMed  Google Scholar 

  36. Verma A, Magesan K, Amose T et al (2022) Age-related assessment of foveal avascular zone and surrounding capillary networks with swept source optical coherence tomography angiography in healthy eyes. Eye (Lond) 36:1857–1864. https://doi.org/10.1038/s41433-022-02146-8

    Article  PubMed  Google Scholar 

  37. Sisternes LD, Klose G, Sandhoefner B et al (2021) ARI Network Hub: Establishing a cloud-based collaborative solution for advancing eye research. Invest Ophthalmol Vis Sci 62(8):2541

    Google Scholar 

  38. Lavia C, Mecê P, Nassisi M et al (2020) Retinal Capillary Plexus Pattern and Density from Fovea to Periphery Measured in Healthy Eyes with Swept-Source Optical Coherence Tomography Angiography. Sci Rep 10:1474. https://doi.org/10.1038/s41598-020-58359-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophoto Int 11:36–42

    Google Scholar 

  40. Vuidel G, Tannier C (2022) Fractalyse 3.0 user manual

  41. ThéMA (2014) Fractalyse—fractal analysis software. Available at: http://www.fractalyse.org. Accessed October 30, 2022

  42. Iafe NA, Phasukkijwatana N, Chen X et al (2016) Retinal capillary density and foveal avascular zone area are age-dependent: quantitative analysis using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:5780–5787

    Article  CAS  PubMed  Google Scholar 

  43. Tălu S (2011) Fractal analysis of normal retinal vascular network. Oftalmologia 55:11–16. https://doi.org/10.1167/iovs.16-20045

    Article  CAS  PubMed  Google Scholar 

  44. Kim AY, Chu ZD, Shahidzadeh A et al (2016) Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:OCT362–OCT370. https://doi.org/10.1167/iovs.15-18904

    Article  PubMed  PubMed Central  Google Scholar 

  45. Somfai GM, Tátrai E, Laurik L et al (2014) Fractal-based analysis of optical coherence tomography data to quantify retinal tissue damage. BMC Bioinformatics 15:295. https://doi.org/10.1186/1471-2105-15-295

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhu PL, Huang F, Lin F et al (2014) The relationship of retinal vessel diameters and fractal dimensions with blood pressure and cardiovascular risk factors. PLoS One 9:e106551. https://doi.org/10.1371/journal.pone.0106551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thomas GN, Ong SY, Tham YC et al (2014) Measurement of macular fractal dimension using a computer-assisted program. Invest Ophthalmol Vis Sci 55:2237–2243. https://doi.org/10.1167/iovs.13-13315

    Article  PubMed  Google Scholar 

  48. Li HT, Mitchell P, Liew G et al (2010) Lens opacity and refractive influences on the measurement of retinal vascular fractal dimension. Acta Ophthalmol 88:e234–e240. https://doi.org/10.1111/j.1755-3768.2010.01975.x

    Article  PubMed  Google Scholar 

  49. Ab Hamid F, CheAzemin MZ, Salam A et al (2016) Retinal Vasculature Fractal Dimension Measures Vessel Density. Curr Eye Res. 41:823–831. https://doi.org/10.3109/02713683.2015.1056375

    Article  PubMed  Google Scholar 

  50. Huang F, Dashtbozorg B, Zhang J et al (2016) Reliability of Using Retinal Vascular Fractal Dimension as a Biomarker in the Diabetic Retinopathy Detection. J Ophthalmol 2016:6259047. https://doi.org/10.1155/2016/6259047

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SriniVas R. Sadda.

Ethics declarations

Ethics approval

Approved by Ethics Committee of Sankara Nethralaya (Vision Research Foundation), India.

Consent for publication

Taken from all authors.

Conflict of interest

Vas Sadda- although the co-author is an editor of the journal, there was no involvement with the peer review process for this article.

Financial disclosures

KM, RG, JT, AT, ARA, MM, PS, AV: None; SRS: 4DMT Consultant/Advisor; Alexion Consultant/Advisor; Allergan, Inc. Consultant/Advisor; Alnylam Pharmaceuticals Consultant/Advisor; Amgen Inc Consultant/Advisor; Apellis Pharmaceuticals, Inc. Consultant/Advisor; Astellas Consultant/Advisor; Bayer Healthcare Pharmaceuticals Consultant/Advisor; Carl Zeiss Meditec Consultant/Advisor, Lecture Fees/Speakers Bureau, Grant Support; Catalyst Pharmaceuticals Inc Consultant/Advisor; Centervue, Inc. Consultant/Advisor; GENENTECH Consultant/Advisor; Gyroscope Therapeutics Consultant/Advisor; Heidelberg Engineering Consultant/Advisor, Lecture Fees/Speakers Bureau, Grant Support; Iveric Bio Consultant/Advisor; Janssen Pharmaceuticals, Inc. Consultant/Advisor; Merck & Co., Inc. Consultant/Advisor; Nanoscope Consultant/Advisor; Nidek Incorporated Lecture Fees/Speakers Bureau; Novartis Pharma AG Consultant/Advisor, Lecture Fees/Speakers Bureau; Optos, Inc. Consultant/Advisor; Oxurion/ Thrombogenics Consultant/Advisor; Pfizer, Inc. Consultant/Advisor; Regeneron Pharmaceuticals, Inc. Consultant/Advisor; Samsung Bioepis Consultant/Advisor; Topcon Medical Systems Inc. Lecture Fees/Speakers Bureau; Vertex Pharmaceuticals Incorporated Consultant/Advisor.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The manuscript was presented at the Association for Research in Vision and Ophthalmology, 2023 at New Orleans, LA, USA.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magesan, K., Gnanaraj, R., Tojjar, J. et al. Fractal analysis of the macular region in healthy eyes using swept-source optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol 261, 2787–2794 (2023). https://doi.org/10.1007/s00417-023-06117-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-023-06117-x

Keywords

Navigation