Skip to main content

Advertisement

Log in

Chord mu and chord alpha as postoperative predictors in multifocal intraocular lens implantation

  • Review Article
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

With the aging population, the prevalence of presbyopia and the popularity of multifocal intraocular lenses is also growing worldwide. Unfortunately, in some cases, they are still associated with postoperative visual disturbances. Recent literature started to evaluate angle kappa- and angle alpha-derived metrics of chord mu and chord alpha as possible predictive values for visual outcomes after multifocal intraocular lens implantation but the published results are inconsistent between studies. Thus, this article aims to review the role of chord mu and chord alpha as postoperative predictors after multifocal intraocular lens implantation and lay the foundation for further research.

Methods

Relevant articles were identified using the following keywords: “presbyopia,” “multifocal intraocular lens,” “angle kappa,” “angle alpha,” “Chord mu,” and “Chord alpha” up to June 2022. An attempt was made to present the majority of publications that addressed the topic.

Conclusions

Chord mu and chord alpha have a predictive role on the outcomes after multifocal intraocular lens implantation but to a different extent. Cataract surgeons should take them into consideration and avoid implanting a multifocal intraocular lens for patients with speculated critical values of chord mu and alpha above 0.5–0.6 mm, depending on the device used for measurement and the multifocal intraocular lens implanted. Currently, chord alpha seems to be a more stable, more widely applicable, and reliable determinant in predicting postoperative outcomes and in patient selection prior to multifocal intraocular lens implantation when compared to chord mu. To draw conclusions on the topic, a controlled study is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hoffer KJ, Savini G (2014) Multifocal intraocular lenses: historical perspective. Essentials in Ophthalmology. Springer, New York, pp 5–28

    Book  Google Scholar 

  2. Zvorničanin J, Zvorničanin E (2018) Premium intraocular lenses: the past, present and future. J Curr Ophthalmol 30:287

    Article  PubMed  PubMed Central  Google Scholar 

  3. Keates RH, Pearce JL, Schneider RT (1987) Clinical results of the multifocal lens. J Cataract Refract Surg 13:557–560

    Article  CAS  PubMed  Google Scholar 

  4. Fricke TR, Tahhan N, Resnikoff S, Papas E, Burnett A, Ho SM et al (2018) Global prevalence of presbyopia and vision impairment from uncorrected presbyopia systematic review, meta-analysis, and modelling. Ophthalmology 125:1492–1499. https://doi.org/10.1016/j.ophtha.2018.04.013

    Article  PubMed  Google Scholar 

  5. Schallhorn JM, Pantanelli SM, Lin CC, Al-Mohtaseb ZN, Steigleman WA, Santhiago MR et al (2021) Multifocal and accommodating intraocular lenses for the treatment of presbyopia: a report by the American Academy of Ophthalmology. Ophthalmology 128:1469–1482

    Article  PubMed  Google Scholar 

  6. Salerno L, Tiveron M, Alió J (2017) Multifocal intraocular lenses: types, outcomes, complications and how to solve them. Taiwan J Ophthalmol 7:179

    Article  PubMed  PubMed Central  Google Scholar 

  7. Braga-Mele R, Chang D, Dewey S, Foster G, Henderson BA, Hill W et al (2014) Multifocal intraocular lenses: relative indications and contraindications for implantation. J Cart Refract Surg 40:313–322. https://doi.org/10.1016/j.jcrs.2013.12.011

    Article  Google Scholar 

  8. Prakash G, Prakash DR, Agarwal A, Kumar DA, Jacob S (2011) Predictive factor and kappa angle analysis for visual satisfactions in patients with multifocal IOL implantation. Nature 25:1187–1193

    CAS  Google Scholar 

  9. Tchah H, Nam K, Yoo A (2017) Predictive factors for photic phenomena after refractive, rotationally asymmetric, multifocal intraocular lens implantation. Int J Ophthalmol 10:241–245

    PubMed  PubMed Central  Google Scholar 

  10. Qi Y, Lin J, Leng L, Zhao G, Wang Q, Li C, Liting Hu (2018) Role of angle κ in visual quality in patients with a trifocal diffractive intraocular lens. J Cataract Refract Surg 44:949–954

    Article  PubMed  Google Scholar 

  11. Lee CY, Huang JY, Sun CC, Yang SF, Chen HC, Lin HY (2019) Correlation and predictability of ocular aberrations and the visual outcome after quadrifocal intraocular lens implantation: a retrospective longitudinal study. BMC Ophthalmol 19:188

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chang DH, Waring GO (2014) The subject-fixated coaxially sighted corneal light reflex: a clinical marker for centration of refractive treatments and devices. Am J Ophthalmol 158:863–874

    Article  PubMed  Google Scholar 

  13. Sun H, Fritz A, Dröge G, Neuhann T, Bille JF (2019) Femtosecond-laser-assisted cataract surgery (FLACS). High resolution imaging in microscopy and ophthalmology. Springer, 301–317

  14. Eto T, Teikari P, Najjar RP, Nishimura Y, Motomura Y, Kuze M, Higuchi S (2020) A Purkinje image-based system for an assessment of the density and transmittance spectra of the human crystalline lens in vivo. Sci Rep 10:1–12

    Article  CAS  Google Scholar 

  15. Rodríguez-Vallejo M, Piñero DP, Fernández J (2019) Avoiding misinterpretations of Kappa angle for clinical research studies with Pentacam. J Optom 12:71

    Article  PubMed  Google Scholar 

  16. Holladay JT (2019) Apparent chord mu and actual chord mu and their clinical value. J Cataract Refract Surg 45:1198–1199

    Article  PubMed  Google Scholar 

  17. Orbscan II and IIz Operators Manual Software 3.12 - Version 2.1 Available at: https://www.bioclinicalservices.com.au/bausch-lomb/corneal-topography-systems--2/orbscan-ii-and-iiz-operators-manual-software-3-12-version-2-1. Accessed: 13 June 2023

  18. Sella R, Shouchane-Blum K, Reitblat O, Bahar I (2022) The association between pupil diameter and apparent chord mu length value. Investig Ophthalmol Vis Sci 63:1698

    Google Scholar 

  19. Qin M, Yuan Y, Wang Y, Li P, Chen W, Wang Y et al (2022) Comparison of preoperative angle kappa measurements in the eyes of cataract patients obtained from Pentacam Scheimpflug system, optical low-coherence reflectometry, and ray-tracing aberrometry. BMC Ophthalmol 22:1–9

    Article  Google Scholar 

  20. Fu Y, Kou J, Chen D, Wang D, Zhao Y, Hu M et al (2019) (2019): Influence of angle kappa and angle alpha on visual quality after implantation of multifocal intraocular lenses. J Cataract Refract Surg 45:1258–1264

    Article  PubMed  Google Scholar 

  21. Rocha-De-lossada C, Sánchez-González JM, Borroni D, Llorens-Bellés V, Rachwani-Anil R, Torras-Sanvicens J et al (2021) Chord mu (µ) and chord alpha (α) length changes in fuchs endothelial corneal dystrophy before and after Descemet membrane endothelial keratoplasty (DMEK) surgery. J Clin Med 10:4844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baenninger PB, Rinert J, Bachmann LM, Iselin KC, Sanak F, Pfaeffli O et al (2022) Distribution of preoperative angle alpha and angle kappa values in patients undergoing multifocal refractive lens surgery based on a positive contact lens test. Graefes Arch Clin Exp Ophthalmol 260:621–628

    Article  PubMed  Google Scholar 

  23. Cervantes-Coste G, Tapia A, Corredor-Ortega C, Osorio M, Valdez R et al (2022) The influence of angle alpha, angle kappa, and optical aberrations on visual outcomes after the implantation of a high-addition trifocal IOL. J Clin Med 11:896

    Article  PubMed  PubMed Central  Google Scholar 

  24. Meng J, Du Y, Wei L, Yao Y, He W, Qian D et al (2021) Distribution of angle α and angle κ in a population with cataract in Shanghai. J Cataract Refract Surg 47:579–584

    Article  CAS  PubMed  Google Scholar 

  25. Jiang JY, Hodge C, Lawless M (2020) Understanding chord mu through a large population-based study. Clin Exp Ophthalmol 48:998–1001

    Article  PubMed  Google Scholar 

  26. Miháltz K, Vécsei-Marlovits PV (2021) The impact of visual axis position on the optical quality after implantation of multifocal intraocular lenses with different asphericity values. Graefe’s Arch Clin Exp Ophthalmol 259:673–683

    Article  Google Scholar 

  27. Mahr MA, Simpson MJ, Erie JC (2020) Angle alpha orientation and magnitude distribution in a cataract surgery population. J Cataract Refract Surg 46:372–377

    Article  PubMed  Google Scholar 

  28. Velasco-Barona C, Corredor-Ortega C, Avendaño-Domínguez A, Cervantes-Coste G, Cantú-Treviño MP, Gonzalez-Salinas R (2021) Impact of correlation of angle α with ocular biometry variables. J Cataract Refract Surg 47:1279–1284

    Article  PubMed  Google Scholar 

  29. Basmak H, Sahin A, Yildirim N, Papakostas TD, Kanellopoulos AJ (2007) Measurement of angle kappa with synoptophore and Orbscan II in a normal population. J Refract Surg 23:456–460

    Article  PubMed  Google Scholar 

  30. Sivakumar S, Sivakumar (2019) Angle kappa in myopes and hyperopes and its role in multifocal lens implantations. Investig Ophthalmol Vis Sci 60:516

    Google Scholar 

  31. Ranka MP, Steele MA (2015) Esotropia associated with high myopia. Curr Opin Ophthalmol 26:362–365

    Article  PubMed  Google Scholar 

  32. Prakash G, Agarwal A, Prakash DR, Kumar DA, Agarwal A, Jacob S (2011) Role of angle kappa in patient dissatisfaction with refractive-design multifocal intraocular lenses. J Cataract Refract Surg 37:1739–1740

    Article  PubMed  Google Scholar 

  33. Park CY, Oh SY, Chuck RS (2012) Measurement of angle kappa and centration in refractive surgery. Curr Opin Ophthalmol 23:269–275

    Article  PubMed  Google Scholar 

  34. Karhanova M, Marešova K, Pluhaček F, Mlčak P, Vlačil O, Sín M (2013) The importance of angle kappa for centration of multifocal intraocular lenses. Cesk Slov Oftalmol 69:64–68

    CAS  PubMed  Google Scholar 

  35. Madrid-Costa D, Pérez-Vives C, Ruiz-Alcocer J, Albarrán-Diego C, Montés-Micó R (2012) Visual simulation through different intraocular lenses in patients with previous myopic corneal ablation using adaptive optics: effect of tilt and decentration. J Cataract Refract Surg 38:774–786

    Article  PubMed  Google Scholar 

  36. Hayashi K, Hayashi H, Nakao F, Hayashi F (2001) Correlation between pupillary size and intraocular lens decentration and visual acuity of a zonal-progressive multifocal lens and a monofocal lens. Ophthalmology 108:2011–2017

    Article  CAS  PubMed  Google Scholar 

  37. Ashena Z, Maqsood S, Ahmed SN, Nanavaty MA (2020) Effect of intraocular lens tilt and decentration on visual acuity, dysphotopsia and wavefront aberrations. Vision 4:41

    Article  PubMed  PubMed Central  Google Scholar 

  38. Soda M, Yaguchi S (2012) Effect of decentration on the optical performance in multifocal intraocular lenses. Ophthalmologica 227:197–204

    Article  PubMed  Google Scholar 

  39. Tabernero J, Benito A, Nourrit V, Artal P, Liang BJ, Grimm S (2006) Instrument for measuring the misalignments of ocular surfaces. Optics Express 14:10945–56

    Article  PubMed  ADS  Google Scholar 

  40. Moshirfar M, Hoggan R, Muthappan V (2013) Angle kappa and its importance in refractive surgery. Oman J Ophthalmol 6:151

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sun M, Alarcon A, Canovas C, State M, Weeber HA, Domingo J, Piers P (2018) The effect of angle kappa in visual performance in diffractive intraocular lenses. Investig Ophthalmol Vis Sci 59:2966

    Google Scholar 

  42. Karhanová M, Pluháček F, Mlčák P, Vláčil O, Šín M, Marešová K (2015) The importance of angle kappa evaluation for implantation of diffractive multifocal intra-ocular lenses using pseudophakic eye model. Acta Ophthalmol 93:123–128

    Article  Google Scholar 

  43. Berdahl JP, Waring GO (2012) Match right lens to patient needs: 10 objective measurements can improve multifocal IOL implantation outcomes. Ophthalmol Times 1:28–29

    Google Scholar 

  44. Garzón N, García-Montero M, López-Artero E, Albarrán-Diego C, Pérez-Cambrodí R, Illarramendi I, Poyales F (2020) Influence of angle κ on visual and refractive outcomes after implantation of a diffractive trifocal intraocular lens. J Cataract Refract Surg 46:721–727

    Article  PubMed  Google Scholar 

  45. Liu Y, Gao Y, Liu R, Hu C, Ma B, Miao J et al (2020) Influence of angle kappa-customized implantation of rotationally asymmetric multifocal intraocular lens on visual quality and patient satisfaction. Acta Ophthalmol 98:734–742

    Article  Google Scholar 

  46. Velasco-Barona C, Corredor-Ortega C, Mendez-Leon A, Casillas-Chavarín NL, Valdepeña-López Velarde D, Cervantes-Coste G et al (2019) Influence of angle and higher-order aberrations on visual quality employing two diffractive trifocal IOLs. J Ophthalmol 7018937

  47. Bonaque-González S, Jaskulski MT, Carmona-Ballester D, Pareja-Ríos A, Trujillo-Sevilla JM (2021) Influence of angle kappa on the optimal intraocular orientation of asymmetric multifocal intraocular lenses. J Optom 14:78

    Article  PubMed  Google Scholar 

  48. Kumar DA, Agarwal A, Agarwal A, Prakash G, Jacobet S (2011) Glued intraocular lens implantation for eyes with defective capsules: a retrospective analysis of anatomical and functional outcome. Saudi J Ophthalmol 25:245

    Article  PubMed  PubMed Central  Google Scholar 

  49. Solomon R, Barsam A, Voldman A, Holladay J, Bhogal M, Perry HD, Donnenfeld ED (2012) Argon laser iridoplasty to improve visual function following multifocal intraocular lens implantation. J Refract Surg 28:281–283

    Article  PubMed  Google Scholar 

  50. Melki SA, Harissi-Dagher M (2011) Coaxially sighted intraocular lens light reflex for centration of the multifocal single piece intraocular lens. Can J Ophthalmol 46:319–321

    Article  PubMed  Google Scholar 

  51. Assia EI, Wong JXH, Shochot Y (2020) The effect on post-operative intraocular lens centration by manual intraoperative centration versus auto-centration. Clin Ophthalmol 14:3475

    Article  PubMed  PubMed Central  Google Scholar 

  52. Xie T, Liu X, Zhu J, Li X (2021) Effect of capsular tension ring on optical and multifunctional lens position outcomes: a systematic review and a meta-analysis. Int Ophthalmol 41:3971–3984

    Article  PubMed  Google Scholar 

  53. Miyoshi T, Fujie S, Yoshida H, Iwamoto H, Tsukamoto H, Oshika T (2020) Effects of capsular tension ring on surgical outcomes of premium intraocular lens in patients with suspected zonular weakness. PLoS ONE 15(2):e0228999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Piracha AR (2016) Using angle alpha in premium IOL screening. Cataract Refract Surg Today 16:5

    Google Scholar 

  55. Wang L, Guimaraes de Souza R, Weikert MP, Koch DD (2019) Evaluation of crystalline lens and intraocular lens tilt using a swept-source optical coherence tomography biometer. J Cataract Refract Surg 45:35–40

    Article  CAS  PubMed  Google Scholar 

  56. Li Z, Zhu Z, Li X, Meng Z, Qu W, Zhao Y (2021) Age-related changes in crystalline lens tilt and decentration: swept-source OCT study. J Cataract Refract Surg 47:1290–1295

    Article  PubMed  Google Scholar 

  57. Wang R, Long T, Gu X, Ma T (2020) Changes in angle kappa and angle alpha before and after cataract surgery. J Cataract Refract Surg 46:365–371

    Article  PubMed  Google Scholar 

  58. Qin M, Ji M, Zhou T, Yuan Y, Luo J, Li P et al (2022) Influence of angle alpha on visual quality after implantation of extended depth of focus intraocular lenses. BMC Ophthalmol 22:1–11

    Article  Google Scholar 

  59. Sandoval HP, Potvin R, Solomon KD (2022) The effects of angle Kappa on clinical results and patient-reported outcomes after implantation of a trifocal intraocular lens. Clin Ophthalmol 16:1321–1329

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fischinger I, Seiler TG, Schmidinger G, Seiler T (2015) Verschiebung des Pupillenzentroids. Der Ophthalmol 112:661–664

    Article  CAS  Google Scholar 

  61. Ordiñaga-Monreal E, Castanera-Gratacós D, Castanera F, Fambuena-Muedra I, Vega F, Millán MS (2022) Pupil size differences between female and male patients after cataract surgery. J Optom 15:179–185

    Article  PubMed  Google Scholar 

  62. Kanellopoulos AJ, Asimellis G, Georgiadou S (2015) Digital pupillometry and centroid shift changes after cataract surgery. J Cataract Refract Surg 41:408–414

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrius Montrimas.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

Andrzej Grzybowki reports lecture fees from Viatris, Thea, Polpharma, Alcon, Topcon, and grants from Bausch& Lomb, Johnson & Johnson, Zeiss, Oculentis, Alcon, and Ocustar. Other authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montrimas, A., Žemaitienė, R., Yao, K. et al. Chord mu and chord alpha as postoperative predictors in multifocal intraocular lens implantation. Graefes Arch Clin Exp Ophthalmol 262, 367–380 (2024). https://doi.org/10.1007/s00417-023-06098-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-023-06098-x

Keywords

Navigation