Skip to main content

Advertisement

Log in

Cellular senescence and ophthalmic diseases: narrative review

  • Review Article
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Cellular senescence is a state of permanent growth arrest whereby a cell reaches its replicative limit. However, senescence can also be triggered prematurely in certain stressors including radiation, oxidative stress, and chemotherapy. This stress-induced senescence has been studied in the context of promoting inflammation, tumor development, and several chronic degenerative diseases of aging. Emerging research has elucidated the role of senescence in various ocular diseases.

Methods

The literature search was performed using PubMed with using the query (senescence OR aging) AND (eye disease OR ocular disease OR ophthalmic disease OR cornea OR glaucoma OR cataract OR retina) on October 20th, 2022. No time restriction was proposed. Articles were excluded if they were not referenced in English.

Results

Overall, 51 articles regarding senescence and ocular diseases were found and summarized in this study. Several signaling pathways have been implicated in the development of senescence. Currently, senescence has been linked to various corneal and retinal pathologies, as well as cataract and glaucoma. Given the number of pathologies, senolytics, which are small molecules with the ability to selective targeting of senescent cells, can be used as therapeutic or prophylactic agents.

Conclusions

Senescence has been shown to underlie the pathogenesis of numerous ocular diseases. The overall literature on senescence and ocular disease is growing rapidly. There is an ongoing debate whether or not cellular senescence detected in experiments contributes in a significant way to diseases. Research on understanding the mechanism of senescence from ocular cells and tissues is just beginning. Multiple animal models are required to test potential senolytics. Currently, no studies exist to date which have demonstrated the benefits of senolytic therapies in human studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shay JW, Wright WE (2000) Hayflick, his limit, and cellular ageing. Nat Rev Mol Cell Biol 1:72–76

    Article  CAS  PubMed  Google Scholar 

  2. Levy MZ, Allsopp RC, Futcher AB, Greider CW, Harley CB (1992) Telomere end-replication problem and cell aging. J Mol Biol 225:951–960

    Article  CAS  PubMed  Google Scholar 

  3. Papaconstantinou J (2019) The role of signaling pathways of inflammation and oxidative stress in development of senescence and aging phenotypes in cardiovascular disease. Cells 8:1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Abate M, Festa A, Falco M, Lombardi A, Luce A, Grimaldi A, Zappavigna S, Sperlongano P, Irace C, Caraglia M (2020) Mitochondria as playmakers of apoptosis, autophagy and senescence. Seminars in cell & developmental biology. Elsevier, 139–153

  5. Aratani S, Tagawa M, Nagasaka S, Sakai Y, Shimizu A, Tsuruoka S (2018) Radiation-induced premature cellular senescence involved in glomerular diseases in rats. Sci Rep 8:1–12

    Article  CAS  Google Scholar 

  6. Patel PL, Suram A, Mirani N, Bischof O, Herbig U (2016) Derepression of hTERT gene expression promotes escape from oncogene-induced cellular senescence. Proc Natl Acad Sci 113:E5024–E5033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pazolli E, Alspach E, Milczarek A, Prior J, Piwnica-Worms D, Stewart SA (2012) Chromatin remodeling underlies the senescence-associated secretory phenotype of tumor stromal fibroblasts that supports cancer progression regulation of stroma-derived OPN. Can Res 72:2251–2261

    Article  CAS  Google Scholar 

  8. García-Prat L, Martínez-Vicente M, Perdiguero E, Ortet L, Rodríguez-Ubreva J, Rebollo E, Ruiz-Bonilla V, Gutarra S, Ballestar E, Serrano AL (2016) Autophagy maintains stemness by preventing senescence. Nature 529:37–42

    Article  PubMed  Google Scholar 

  9. Mikuła-Pietrasik J, Niklas A, Uruski P, Tykarski A, Książek K (2020) Mechanisms and significance of therapy-induced and spontaneous senescence of cancer cells. Cell Mol Life Sci 77:213–229

    Article  PubMed  Google Scholar 

  10. Wang B, Kohli J, Demaria M (2020) Senescent cells in cancer therapy: friends or foes? Trends Cancer 6:838–857

    Article  CAS  PubMed  Google Scholar 

  11. Faget DV, Ren Q, Stewart SA (2019) Unmasking senescence: context-dependent effects of SASP in cancer. Nat Rev Cancer 19:439–453

    Article  CAS  PubMed  Google Scholar 

  12. Muñoz-Espín D, Cañamero M, Maraver A, Gómez-López G, Contreras J, Murillo-Cuesta S, Rodríguez-Baeza A, Varela-Nieto I, Ruberte J, Collado M (2013) Programmed cell senescence during mammalian embryonic development. Cell 155:1104–1118

    Article  PubMed  Google Scholar 

  13. Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, Laberge R-M, Vijg J, Van Steeg H, Dollé ME (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31:722–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Childs BG, Durik M, Baker DJ, Van Deursen JM (2015) Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 21:1424–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rahman I, Bagchi D (2013) Inflammation, advancing age and nutrition: research and clinical interventions. Academic Press

    Google Scholar 

  16. Williams AB, Schumacher B (2016) p53 in the DNA-damage-repair process. Cold Spring Harb Perspect Med 6:a026070

    Article  PubMed  PubMed Central  Google Scholar 

  17. Spallarossa P, Altieri P, Aloi C, Garibaldi S, Barisione C, Ghigliotti G, Fugazza G, Barsotti A, Brunelli C (2009) Doxorubicin induces senescence or apoptosis in rat neonatal cardiomyocytes by regulating the expression levels of the telomere binding factors 1 and 2. Am J Physiol-Heart Circ Physiol 297:H2169–H2181

    Article  CAS  PubMed  Google Scholar 

  18. Vicencio Bustamante JM, Galluzzi L, Tajeddine N, Ortiz C, Criollo Céspedes A, Tasdemir E, Morselli E, Ben Younes A, Maiuri MC, Lavandero González S (2008) Senescence, apoptosis or autophagy? When a damaged cell must decide its path-a mini-review

  19. Giacinti C, Giordano A (2006) RB and cell cycle progression. Oncogene 25:5220–5227

    Article  CAS  PubMed  Google Scholar 

  20. Kumari R, Jat P (2021) Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol 9:645593

    Article  PubMed  PubMed Central  Google Scholar 

  21. Aliouat-Denis C-M, Dendouga N, Van den Wyngaert I, Goehlmann H, Steller U, Van De Weyer I, Van Slycken N, Andries L, Kass S, Luyten W (2005) p53-independent regulation of p21Waf1/Cip1 expression and senescence by Chk2. Mol Cancer Res 3:627–634

    Article  CAS  PubMed  Google Scholar 

  22. González-Gualda E, Baker AG, Fruk L, Muñoz-Espín D (2021) A guide to assessing cellular senescence in vitro and in vivo. FEBS J 288:56–80

    Article  PubMed  Google Scholar 

  23. Stein GH, Drullinger LF, Soulard A, Dulić V (1999) Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol Cell Biol 19:2109–2117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC (1996) Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci 93:13742–13747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Palafox M, Monserrat L, Bellet M, Villacampa G, Gonzalez-Perez A, Oliveira M, Brasó-Maristany F, Ibrahimi N, Kannan S, Mina L (2022) High p16 expression and heterozygous RB1 loss are biomarkers for CDK4/6 inhibitor resistance in ER+ breast cancer. Nat Commun 13:1–20

    Google Scholar 

  26. Liu D, Xu Y (2011) p53, oxidative stress, and aging. Antioxid Redox Signal 15:1669–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21CIP1, but not p16INK4a. Mol Cell 14:501–513

    Article  CAS  PubMed  Google Scholar 

  28. Sun P, Yoshizuka N, New L, Moser BA, Li Y, Liao R, Xie C, Chen J, Deng Q, Yamout M (2007) PRAK is essential for ras-induced senescence and tumor suppression. Cell 128:295–308

    Article  CAS  PubMed  Google Scholar 

  29. Wang Z, Wei D, Xiao H (2013) Methods of cellular senescence induction using oxidative stress. Biological aging. Springer, 135–144

  30. Blander G, De Oliveira RM, Conboy CM, Haigis M, Guarente L (2003) Superoxide dismutase 1 knock-down induces senescence in human fibroblasts. J Biol Chem 278:38966–38969

    Article  CAS  PubMed  Google Scholar 

  31. Macip S, Igarashi M, Fang L, Chen A, Pan Z-Q, Lee SW, Aaronson SA (2002) Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J 21:2180–2188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liao N, Shi Y, Zhang C, Zheng Y, Wang Y, Zhao B, Zeng Y, Liu X, Liu J (2019) Antioxidants inhibit cell senescence and preserve stemness of adipose tissue-derived stem cells by reducing ROS generation during long-term in vitro expansion. Stem Cell Res Ther 10:1–11

    Article  Google Scholar 

  33. Petrova NV, Velichko AK, Razin SV, Kantidze OL (2016) Small molecule compounds that induce cellular senescence. Aging Cell 15:999–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jung SH, Hwang HJ, Kang D, Park HA, Lee HC, Jeong D, Lee K, Park HJ, Ko Y-G, Lee J-S (2019) mTOR kinase leads to PTEN-loss-induced cellular senescence by phosphorylating p53. Oncogene 38:1639–1650

    Article  CAS  PubMed  Google Scholar 

  35. Xu Y, Li N, Xiang R, Sun P (2014) Emerging roles of the p38 MAPK and PI3K/AKT/mTOR pathways in oncogene-induced senescence. Trends Biochem Sci 39:268–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Son HN, Chi HNQ, Chung DC, Long LT (2019) Morphological changes during replicative senescence in bovine ovarian granulosa cells. Cell Cycle 18:1490–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hernandez-Segura A, Nehme J, Demaria M (2018) Hallmarks of cellular senescence. Trends Cell Biol 28:436–453

    Article  CAS  PubMed  Google Scholar 

  38. Ryu S, Oh Y, Park S (2007) Failure of stress-induced downregulation of Bcl-2 contributes to apoptosis resistance in senescent human diploid fibroblasts. Cell Death Differ 14:1020–1028

    Article  CAS  PubMed  Google Scholar 

  39. Beck J, Horikawa I, Harris C (2020) Cellular senescence: mechanisms, morphology, and mouse models. Vet Pathol 57:747–757

    Article  CAS  PubMed  Google Scholar 

  40. Citrin DE, Shankavaram U, Horton JA, Shield W III, Zhao S, Asano H, White A, Sowers A, Thetford A, Chung EJ (2013) Role of type II pneumocyte senescence in radiation-induced lung fibrosis. J Natl Cancer Inst 105:1474–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. da Silva PF, Ogrodnik M, Kucheryavenko O, Glibert J, Miwa S, Cameron K, Ishaq A, Saretzki G, Nagaraja-Grellscheid S, Nelson G (2019) The bystander effect contributes to the accumulation of senescent cells in vivo. Aging Cell 18:e12848

    Article  PubMed  Google Scholar 

  42. Van Deursen JM (2014) The role of senescent cells in ageing. Nature 509:439–446

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ohanna M, Giuliano S, Bonet C, Imbert V, Hofman V, Zangari J, Bille K, Robert C, Bressac-de Paillerets B, Hofman P (2011) Senescent cells develop a PARP-1 and nuclear factor-κB-associated secretome (PNAS). Genes Dev 25:1245–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wiley CD, Velarde MC, Lecot P, Liu S, Sarnoski EA, Freund A, Shirakawa K, Lim HW, Davis SS, Ramanathan A (2016) Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab 23:303–314

    Article  CAS  PubMed  Google Scholar 

  45. Hoare M, Ito Y, Kang T-W, Weekes MP, Matheson NJ, Patten DA, Shetty S, Parry AJ, Menon S, Salama R (2016) NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat Cell Biol 18:979–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Herranz N, Gallage S, Mellone M, Wuestefeld T, Klotz S, Hanley CJ, Raguz S, Acosta JC, Innes AJ, Banito A (2015) mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat Cell Biol 17:1205–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bent EH, Gilbert LA, Hemann MT (2016) A senescence secretory switch mediated by PI3K/AKT/mTOR activation controls chemoprotective endothelial secretory responses. Genes Dev 30:1811–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rajagopalan S, Long EO (2012) Cellular senescence induced by CD158d reprograms natural killer cells to promote vascular remodeling. Proc Natl Acad Sci 109:20596–20601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Adams PD (2009) Healing and hurting: molecular mechanisms, functions, and pathologies of cellular senescence. Mol Cell 36:2–14

    Article  CAS  PubMed  Google Scholar 

  50. Cosme-Blanco W, Shen MF, Lazar AJ, Pathak S, Lozano G, Multani AS, Chang S (2007) Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence. EMBO Rep 8:497–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jun J-I, Lau LF (2010) The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol 12:676–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C, Yee H, Zender L, Lowe SW (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134:657–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shimizu I, Yoshida Y, Katsuno T, Tateno K, Okada S, Moriya J, Yokoyama M, Nojima A, Ito T, Zechner R (2012) p53-induced adipose tissue inflammation is critically involved in the development of insulin resistance in heart failure. Cell Metab 15:51–64

    Article  CAS  PubMed  Google Scholar 

  54. Thangavel C, Dean JL, Ertel A, Knudsen KE, Aldaz CM, Witkiewicz AK, Clarke R, Knudsen ES (2011) Therapeutically activating RB: reestablishing cell cycle control in endocrine therapy-resistant breast cancer. Endocr Relat Cancer 18:333–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhou X, Perez F, Han K, Jurivich DA (2006) Clonal senescence alters endothelial ICAM-1 function. Mech Ageing Dev 127:779–785. https://doi.org/10.1016/j.mad.2006.07.003

    Article  CAS  PubMed  Google Scholar 

  56. Chilosi M, Carloni A, Rossi A, Poletti V (2013) Premature lung aging and cellular senescence in the pathogenesis of idiopathic pulmonary fibrosis and COPD/emphysema. Translational research : the journal of laboratory and clinical medicine 162:156–173. https://doi.org/10.1016/j.trsl.2013.06.004

    Article  CAS  PubMed  Google Scholar 

  57. Martin JA, Brown TD, Heiner AD, Buckwalter JA (2004) Chondrocyte senescence, joint loading and osteoarthritis. Clinical orthopaedics and related research: S96–103 https://doi.org/10.1097/01.blo.0000143818.74887.b1

  58. Liton PB, Challa P, Stinnett S, Luna C, Epstein DL, Gonzalez P (2005) Cellular senescence in the glaucomatous outflow pathway. Exp Gerontol 40:745–748. https://doi.org/10.1016/j.exger.2005.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sone H, Kagawa Y (2005) Pancreatic beta cell senescence contributes to the pathogenesis of type 2 diabetes in high-fat diet-induced diabetic mice. Diabetologia 48:58–67. https://doi.org/10.1007/s00125-004-1605-2

    Article  CAS  PubMed  Google Scholar 

  60. Minamino T, Orimo M, Shimizu I, Kunieda T, Yokoyama M, Ito T, Nojima A, Nabetani A, Oike Y, Matsubara H, Ishikawa F, Komuro I (2009) A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med 15:1082–1087. https://doi.org/10.1038/nm.2014

    Article  CAS  PubMed  Google Scholar 

  61. Braun H, Schmidt BM, Raiss M, Baisantry A, Mircea-Constantin D, Wang S, Gross ML, Serrano M, Schmitt R, Melk A (2012) Cellular senescence limits regenerative capacity and allograft survival. J Am Soc Nephrol 23:1467–1473. https://doi.org/10.1681/asn.2011100967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Melk A, Schmidt BM, Braun H, Vongwiwatana A, Urmson J, Zhu LF, Rayner D, Halloran PF (2009) Effects of donor age and cell senescence on kidney allograft survival. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg 9:114–123. https://doi.org/10.1111/j.1600-6143.2008.02500.x

    Article  CAS  Google Scholar 

  63. Li ZY, Chen ZL, Zhang T, Wei C, Shi WY (2016) TGF-β and NF-κB signaling pathway crosstalk potentiates corneal epithelial senescence through an RNA stress response. Aging 8:2337–2354. https://doi.org/10.18632/aging.101050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bae Y, Hwang JS, Shin YJ (2021) miR-30c-1 encourages human corneal endothelial cells to regenerate through ameliorating senescence. Aging 13:9348–9372. https://doi.org/10.18632/aging.202719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. De Paiva CS, Volpe EA, Gandhi NB, Zhang X, Zheng X, Pitcher JD 3rd, Farley WJ, Stern ME, Niederkorn JY, Li DQ, Flavell RA, Pflugfelder SC (2011) Disruption of TGF-β signaling improves ocular surface epithelial disease in experimental autoimmune keratoconjunctivitis sicca. PloS One 6:e29017. https://doi.org/10.1371/journal.pone.0029017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ogawa Y, Yamazaki K, Kuwana M, Mashima Y, Nakamura Y, Ishida S, Toda I, Oguchi Y, Tsubota K, Okamoto S, Kawakami Y (2001) A significant role of stromal fibroblasts in rapidly progressive dry eye in patients with chronic GVHD. Invest Ophthalmol Vis Sci 42:111–119

    CAS  PubMed  Google Scholar 

  67. Leonardi A, Di Stefano A, Motterle L, Zavan B, Abatangelo G, Brun P (2011) Transforming growth factor-β/Smad - signalling pathway and conjunctival remodelling in vernal keratoconjunctivitis. Clin Exp Allergy : J Br Soc Allergy Clin Immunol 41:52–60. https://doi.org/10.1111/j.1365-2222.2010.03626.x

    Article  CAS  Google Scholar 

  68. Kria L, Ohira A, Amemiya T (1996) Immunohistochemical localization of basic fibroblast growth factor, platelet derived growth factor, transforming growth factor-beta and tumor necrosis factor-alpha in the pterygium. Acta Histochem 98:195–201. https://doi.org/10.1016/s0065-1281(96)80038-9

    Article  CAS  PubMed  Google Scholar 

  69. Saika S (2006) TGFbeta pathobiology in the eye. Laboratory investigation; a J Tech Methods Pathol 86:106–115 https://doi.org/10.1038/labinvest.3700375

  70. Benito MJ, Calder V, Corrales RM, García-Vázquez C, Narayanan S, Herreras JM, Stern ME, Calonge M, Enríquez-de-Salamanca A (2013) Effect of TGF-β on ocular surface epithelial cells. Exp Eye Res 107:88–100. https://doi.org/10.1016/j.exer.2012.11.017

    Article  CAS  PubMed  Google Scholar 

  71. Mimura T, Joyce NC (2006) Replication competence and senescence in central and peripheral human corneal endothelium. Invest Ophthalmol Vis Sci 47:1387–1396

    Article  PubMed  Google Scholar 

  72. Wang Y, Zang X, Wang Y, Chen P (2012) High expression of p16INK4a and low expression of Bmi1 are associated with endothelial cellular senescence in the human cornea. Mol Vis 18:803–815

    PubMed  PubMed Central  Google Scholar 

  73. Pathai S, Lawn SD, Shiels PG, Weiss HA, Cook C, Wood R, Gilbert CE (2013) Corneal endothelial cells provide evidence of accelerated cellular senescence associated with HIV infection: a case-control study. PloS One 8:e57422. https://doi.org/10.1371/journal.pone.0057422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Faragher R, Mulholland B, Tuft S, Sandeman S, Khaw P (1997) Aging and the cornea. Br J Ophthalmol 81:814–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gipson IK (2013) Age-related changes and diseases of the ocular surface and cornea. Investig Ophthalmol Vis Sci 54:ORSF48-ORSF53

  76. Darlington JK, Adrean SD, Schwab IR (2006) Trends of penetrating keratoplasty in the United States from 1980 to 2004. Ophthalmology 113:2171–2175. https://doi.org/10.1016/j.ophtha.2006.06.034

    Article  PubMed  Google Scholar 

  77. Matthaei M, Meng H, Meeker AK, Eberhart CG, Jun AS (2012) Endothelial Cdkn1a (p21) overexpression and accelerated senescence in a mouse model of Fuchs endothelial corneal dystrophy. Invest Ophthalmol Vis Sci 53:6718–6727. https://doi.org/10.1167/iovs.12-9669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Matthaei M, Hu J, Kallay L, Eberhart CG, Cursiefen C, Qian J, Lackner EM, Jun AS (2014) Endothelial cell microRNA expression in human late-onset Fuchs’ dystrophy. Invest Ophthalmol Vis Sci 55:216–225. https://doi.org/10.1167/iovs.13-12689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhao X, Wang Y, Wang Y, Li S, Chen P (2016) Oxidative stress and premature senescence in corneal endothelium following penetrating keratoplasty in an animal model. BMC Ophthalmol 16:16. https://doi.org/10.1186/s12886-016-0192-6

    Article  PubMed  PubMed Central  Google Scholar 

  80. Nassiri N, Eslani M, Panahi N, Mehravaran S, Ziaei A, Djalilian AR (2013) Ocular graft versus host disease following allogeneic stem cell transplantation: a review of current knowledge and recommendations. J Ophthalmic Vis Res 8:351

    PubMed  PubMed Central  Google Scholar 

  81. Tabbara KF, Al-Ghamdi A, Al-Mohareb F, Ayas M, Chaudhri N, Al-Sharif F, Al-Zahrani H, Mohammed SY, Nassar A, Aljurf M (2009) Ocular findings after allogeneic hematopoietic stem cell transplantation. Ophthalmology 116:1624–1629

    Article  PubMed  Google Scholar 

  82. Yamane M, Sato S, Shimizu E, Shibata S, Hayano M, Yaguchi T, Kamijuku H, Ogawa M, Suzuki T, Mukai S (2020) Senescence-associated secretory phenotype promotes chronic ocular graft-vs-host disease in mice and humans. FASEB J 34:10778–10800

    Article  CAS  PubMed  Google Scholar 

  83. Kawai M, Ogawa Y, Shimmura S, Ohta S, Suzuki T, Kawamura N, Kuwana M, Kawakami Y, Tsubota K (2013) Expression and localization of aging markers in lacrimal gland of chronic graft-versus-host disease. Sci Rep 3:1–6

    Article  Google Scholar 

  84. Kitazawa K, Inotmata T, Shih K, Hughes J-WB, Bozza N, Tomioka Y, Numa K, Yokoi N, Campisi J, Dana R (2022) Impact of aging on the pathophysiology of dry eye disease: a systematic review and meta-analysis. The Ocular Surface

  85. Mimura T, Yamagami S, Usui T, Funatsu H, Mimura Y, Noma H, Honda N, Amano S (2009) Changes of conjunctivochalasis with age in a hospital-based study. Am J Ophthalmol 147(171–177):e171

    Article  Google Scholar 

  86. Watanabe A, Yokoi N, Kinoshita S, Hino Y, Tsuchihashi Y (2004) Clinicopathologic study of conjunctivochalasis. Cornea 23:294–298

    Article  PubMed  Google Scholar 

  87. Ward SK, Wakamatsu TH, Dogru M, Ibrahim OM, Kaido M, Ogawa Y, Matsumoto Y, Igarashi A, Ishida R, Shimazaki J (2010) The role of oxidative stress and inflammation in conjunctivochalasis. Invest Ophthalmol Vis Sci 51:1994–2002

    Article  PubMed  Google Scholar 

  88. Xiang M, Mo L, Zhan Y, Wen H, Zhou H, Miao W (2019) P38-mediated cellular senescence in conjunctivochalasis fibroblasts. Invest Ophthalmol Vis Sci 60:4643–4651

    Article  CAS  PubMed  Google Scholar 

  89. Liu J, Zhang J, Zhang G, Zhou T, Zou X, Guan H, Wang Y (2021) CircMRE11A_013 binds to UBXN1 and integrates ATM activation enhancing lens epithelial cells senescence in age-related cataract. Aging 13:5383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ivanov IV, Mappes T, Schaupp P, Lappe C, Wahl S (2018) Ultraviolet radiation oxidative stress affects eye health. J Biophotonics 11:e201700377

    Article  PubMed  Google Scholar 

  91. Asbell PA, Dualan I, Mindel J, Brocks D, Ahmad M, Epstein S (2005) Age-related cataract. The Lancet 365:599–609

    Article  Google Scholar 

  92. Fu Q, Qin Z, Yu J, Yu Y, Tang Q, Lyu D, Zhang L, Chen Z, Yao K (2016) Effects of senescent lens epithelial cells on the severity of age-related cortical cataract in humans: a case–control study. Medicine 95

  93. Yan Y, Yu H, Sun L, Liu H, Wang C, Wei X, Song F, Li H, Ge H, Qian H (2019) Laminin α4 overexpression in the anterior lens capsule may contribute to the senescence of human lens epithelial cells in age-related cataract. Aging 11:2699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Matsuyama M, Tanaka H, Inoko A, Goto H, Yonemura S, Kobori K, Hayashi Y, Kondo E, Itohara S, Izawa I (2013) Defect of mitotic vimentin phosphorylation causes microophthalmia and cataract via aneuploidy and senescence in lens epithelial cells*♦. J Biol Chem 288:35626–35635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gulluni F, Prever L, Li H, Krafcikova P, Corrado I, Lo W-T, Margaria JP, Chen A, De Santis MC, Cnudde SJ (2021) PI (3, 4) P2-mediated cytokinetic abscission prevents early senescence and cataract formation. Science 374:eabk0410

  96. Huang Y, Liu Y, Yu S, Li W, Li J, Zhao B, Hu X, Jin H (2022) Biliverdin reductase A protects lens epithelial cells against oxidative damage and cellular senescence in age-related cataract. Oxidative Med Cell Longev 2022

  97. Caprioli J (2013) Glaucoma: a disease of early cellular senescence. Invest Ophthalmol Vis Sci 54:ORSF60-ORSF67

  98. Balazsi A, Rootman J, Drance S, Schulzer M, Douglas G (1984) The effect of age on the nerve fiber population of the human optic nerve. Am J Ophthalmol 97:760–766

    Article  CAS  PubMed  Google Scholar 

  99. Skowronska-Krawczyk D, Zhao L, Zhu J, Weinreb RN, Cao G, Luo J, Flagg K, Patel S, Wen C, Krupa M (2015) P16INK4a upregulation mediated by SIX6 defines retinal ganglion cell pathogenesis in glaucoma. Mol Cell 59:931–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rocha LR, Nguyen Huu VA, Palomino La Torre C, Xu Q, Jabari M, Krawczyk M, Weinreb RN, Skowronska-Krawczyk D (2020) Early removal of senescent cells protects retinal ganglion cells loss in experimental ocular hypertension. Aging Cell 19:e13089

    Article  CAS  PubMed  Google Scholar 

  101. Coudrillier B, Tian J, Alexander S, Myers KM, Quigley HA, Nguyen TD (2012) Biomechanics of the human posterior sclera: age-and glaucoma-related changes measured using inflation testing. Invest Ophthalmol Vis Sci 53:1714–1728

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wostyn P, De Groot V, Van Dam D, Audenaert K, De Deyn PP (2013) Senescent changes in cerebrospinal fluid circulatory physiology and their role in the pathogenesis of normal-tension glaucoma. Am J Ophthalmol 156(5–14):e12

    Google Scholar 

  103. Embleton S, Hosking S, Roff Hilton E, Cunliffe I (2002) Effect of senescence on ocular blood flow in the retina, neuroretinal rim and lamina cribrosa, using scanning laser Doppler flowmetry. Eye 16:156–162

    Article  CAS  PubMed  Google Scholar 

  104. Morgan JT, Raghunathan VK, Chang Y-R, Murphy CJ, Russell P (2015) The intrinsic stiffness of human trabecular meshwork cells increases with senescence. Oncotarget 6:15362

    Article  PubMed  PubMed Central  Google Scholar 

  105. Alice LY, Birke K, Moriniere J, Welge-Lüssen U (2010) TGF-β2 induces senescence-associated changes in human trabecular meshwork cells. Invest Ophthalmol Vis Sci 51:5718–5723

    Article  Google Scholar 

  106. Gehrs KM, Anderson DH, Johnson LV, Hageman GS (2006) Age-related macular degeneration—emerging pathogenetic and therapeutic concepts. Ann Med 38:450–471

    Article  PubMed  Google Scholar 

  107. Zhu D, Wu J, Spee C, Ryan SJ, Hinton DR (2009) BMP4 mediates oxidative stress-induced retinal pigment epithelial cell senescence and is overexpressed in age-related macular degeneration. J Biol Chem 284:9529–9539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Liu C, Cao L, Yang S, Xu L, Liu P, Wang F, Xu D (2015) Subretinal injection of amyloid-β peptide accelerates RPE cell senescence and retinal degeneration. Int J Mol Med 35:169–176

    Article  CAS  PubMed  Google Scholar 

  109. Kaarniranta K, Kajdanek J, Morawiec J, Pawlowska E, Blasiak J (2018) PGC-1α protects RPE cells of the aging retina against oxidative stress-induced degeneration through the regulation of senescence and mitochondrial quality control. The significance for AMD pathogenesis. Int J Mol Sci 19:2317

  110. Lee KS, Lin S, Copland DA, Dick AD, Liu J (2021) Cellular senescence in the aging retina and developments of senotherapies for age-related macular degeneration. J Neuroinflammation 18:1–17

    Article  Google Scholar 

  111. Puigserver P, Adelmant G, Wu Z, Fan M, Xu J, O’Malley B, Spiegelman BM (1999) Activation of PPARγ coactivator-1 through transcription factor docking. Science 286:1368–1371

    Article  CAS  PubMed  Google Scholar 

  112. Blasiak J, Piechota M, Pawlowska E, Szatkowska M, Sikora E, Kaarniranta K (2017) Cellular senescence in age-related macular degeneration: can autophagy and DNA damage response play a role? Oxidative Med Cell Longev 2017

  113. Egger A, Samardzija M, Sothilingam V, Tanimoto N, Lange C, Salatino S, Fang L, Garcia-Garrido M, Beck S, Okoniewski MJ (2012) PGC-1α determines light damage susceptibility of the murine retina. PLoS One 7:e31272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Schmidt-Erfurth U, Chong V, Loewenstein A, Larsen M, Souied E, Schlingemann R, Eldem B, Monés J, Richard G, Bandello F (2014) Guidelines for the management of neovascular age-related macular degeneration by the European Society of Retina Specialists (EURETINA). Br J Ophthalmol 98:1144–1167

    Article  PubMed  Google Scholar 

  115. Mishima K, Handa JT, Aotaki-Keen A, Lutty GA, Morse LS, Hjelmeland LM (1999) Senescence-associated beta-galactosidase histochemistry for the primate eye. Invest Ophthalmol Vis Sci 40:1590–1593

    CAS  PubMed  Google Scholar 

  116. López-Luppo M, Catita J, Ramos D, Navarro M, Carretero A, Mendes-Jorge L, Muñoz-Cánoves P, Rodriguez-Baeza A, Nacher V, Ruberte J (2017) Cellular senescence is associated with human retinal microaneurysm formation during aging. Invest Ophthalmol Vis Sci 58:2832–2842

    Article  PubMed  Google Scholar 

  117. Chaum E, Winborn CS, Bhattacharya S (2015) Genomic regulation of senescence and innate immunity signaling in the retinal pigment epithelium. Mamm Genome 26:210–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Oubaha M, Miloudi K, Dejda A, Guber V, Mawambo G, Germain M-A, Bourdel G, Popovic N, Rezende FA, Kaufman RJ (2016) Senescence-associated secretory phenotype contributes to pathological angiogenesis in retinopathy. Sci Transl Med 8:362ra144–362ra144

  119. Cabrera AP, Bhaskaran A, Xu J, Yang X, Scott HA, Mohideen U, Ghosh K (2016) Senescence increases choroidal endothelial stiffness and susceptibility to complement injury: implications for choriocapillaris loss in AMD. Invest Ophthalmol Vis Sci 57:5910–5918

    Article  PubMed  Google Scholar 

  120. Sene A, Khan AA, Cox D, Nakamura RE, Santeford A, Kim BM, Sidhu R, Onken MD, Harbour JW, Hagbi-Levi S (2013) Impaired cholesterol efflux in senescent macrophages promotes age-related macular degeneration. Cell Metab 17:549–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lamoke F, Shaw S, Yuan J, Ananth S, Duncan M, Martin P, Bartoli M (2015) Increased oxidative and nitrative stress accelerates aging of the retinal vasculature in the diabetic retina. PLoS One 10:e0139664

    Article  PubMed  PubMed Central  Google Scholar 

  122. Crespo-Garcia S, Tsuruda PR, Dejda A, Ryan RD, Fournier F, Chaney SY, Pilon F, Dogan T, Cagnone G, Patel P (2021) Pathological angiogenesis in retinopathy engages cellular senescence and is amenable to therapeutic elimination via BCL-xL inhibition. Cell Metab 33(818–832):e817

    Google Scholar 

  123. Thounaojam MC, Jadeja RN, Warren M, Powell FL, Raju R, Gutsaeva D, Khurana S, Martin PM, Bartoli M (2019) MicroRNA-34a (miR-34a) mediates retinal endothelial cell premature senescence through mitochondrial dysfunction and loss of antioxidant activities. Antioxidants 8:328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rojas M, Lemtalsi T, Toque HA, Xu Z, Fulton D, Caldwell RW, Caldwell RB (2017) NOX2-induced activation of arginase and diabetes-induced retinal endothelial cell senescence. Antioxidants 6:43

    Article  PubMed  PubMed Central  Google Scholar 

  125. Shosha E, Xu Z, Narayanan SP, Lemtalsi T, Fouda AY, Rojas M, Xing J, Fulton D, Caldwell RW, Caldwell RB (2018) Mechanisms of diabetes-induced endothelial cell senescence: role of arginase 1. Int J Mol Sci 19:1215

    Article  PubMed  PubMed Central  Google Scholar 

  126. Merz S, Kershaw O, Petrick A, Gruber A, Klopfleisch R, Breithaupt A (2019) Tumour, but not age-associated, increase of senescence markers γH2AX and p21 in the canine eye. J Comp Pathol 173:41–48

    Article  CAS  PubMed  Google Scholar 

  127. Kirkland J, Tchkonia T (2020) Senolytic drugs: from discovery to translation. J Intern Med 288:518–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Stefanova NA, Fursova AZ, Sarsenbaev KN, Kolosova NG (2011) Effects of Cistanche deserticola on behavior and signs of cataract and retinopathy in senescence-accelerated OXYS rats. J Ethnopharmacol 138:624–632

    Article  PubMed  Google Scholar 

  129. Wei X, Luo D, Yan Y, Yu H, Sun L, Wang C, Song F, Ge H, Qian H, Li X (2019) Kojic acid inhibits senescence of human corneal endothelial cells via NF-κB and p21 signaling pathways. Exp Eye Res 180:174–183

    Article  CAS  PubMed  Google Scholar 

  130. Gidfar S, Milani FY, Milani BY, Shen X, Eslani M, Putra I, Huvard MJ, Sagha H, Djalilian AR (2017) Rapamycin prolongs the survival of corneal epithelial cells in culture. Sci Rep 7:1–10

    Article  Google Scholar 

  131. Sun Q, Qing W, Qi R, Zou M, Gong L, Liu Y, Li D-C (2018) Inhibition of Sumoylation alleviates oxidative stress-induced retinal pigment epithelial cell senescence and represses proinflammatory gene expression. Curr Mol Med 18:575–583

    Article  CAS  PubMed  Google Scholar 

  132. Campello L, Esteve-Rudd J, Cuenca N, Martín-Nieto J (2013) The ubiquitin–proteasome system in retinal health and disease. Mol Neurobiol 47:790–810

    Article  CAS  PubMed  Google Scholar 

  133. Zhu Y, Doornebal EJ, Pirtskhalava T, Giorgadze N, Wentworth M, Fuhrmann-Stroissnigg H, Niedernhofer LJ, Robbins PD, Tchkonia T, Kirkland JL (2017) New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463. Aging 9:955

    Article  PubMed  PubMed Central  Google Scholar 

  134. Baar MP, Brandt RM, Putavet DA, Klein JD, Derks KW, Bourgeois BR, Stryeck S, Rijksen Y, van Willigenburg H, Feijtel DA (2017) Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169(132–147):e116

    Google Scholar 

  135. Hickson LJ, Prata LGL, Bobart SA, Evans TK, Giorgadze N, Hashmi SK, Herrmann SM, Jensen MD, Jia Q, Jordan KL (2019) Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. EBioMedicine 47:446–456

    Article  PubMed  PubMed Central  Google Scholar 

  136. Farr JN, Xu M, Weivoda MM, Monroe DG, Fraser DG, Onken JL, Negley BA, Sfeir JG, Ogrodnik MB, Hachfeld CM (2017) Targeting cellular senescence prevents age-related bone loss in mice. Nat Med 23:1072–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Borghesan M, Hoogaars W, Varela-Eirin M, Talma N, Demaria M (2020) A senescence-centric view of aging: implications for longevity and disease. Trends Cell Biol 30:777–791

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by R01 EY024349 (ARD) and UH3 EY031809 (ARD): Core Grant for Vision Research EY01792 all from NEI/NIH; Vision Research Program – Congressionally Directed Medical Research Program VR170180 from the Department of Defense, Unrestricted Grant to the Department and Physician-Scientist Award both from Research to Prevent Blindness.

Author information

Authors and Affiliations

Authors

Contributions

M. S. and A. D. conceptualized the review topic. K. C. and R. K. conducted the search for literature, extracted relevant points of discussion, updated reference lists, and contributed to writing of the report. M. S., K. C., R. K., and A. D. were involved in drafting, and contributed to writing of the review. All co-authors approved of the review being submitted for publication.

Corresponding author

Correspondence to Ali R. Djalilian.

Ethics declarations

Informed consent

There were no human participants and/or animals involved in the study; therefore, no informed consent process was applicable in this review article.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mohammad Soleimani and Kasra Cheraqpour contributed equally.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleimani, M., Cheraqpour, K., Koganti, R. et al. Cellular senescence and ophthalmic diseases: narrative review. Graefes Arch Clin Exp Ophthalmol 261, 3067–3082 (2023). https://doi.org/10.1007/s00417-023-06070-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-023-06070-9

Keywords

Navigation