Skip to main content

Advertisement

Log in

Comparison of the prediction accuracy of 13 formulas in long eyes

  • Cataract
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the accuracy of modern intraocular lens (IOL) power calculation formulas in eyes with axial length (AL) ≥ 26.00 mm.

Methods

A total of 193 eyes with one type of lens were analysed. An IOL Master 700 (Carl Zeiss Meditec, Jena, Germany) was used for optical biometry. Thirteen formulas and their modifications were evaluated: Barrett Universal II, Haigis, Hoffer QST, Holladay 1 MWK, Holladay 1 NLR, Holladay 2 NLR, Kane, Naeser 2, SRK/T, SRK/T MWK, T2, VRF and VRF-G. The User Group for Laser Interference Biometry lens constants were used for IOL power calculation. The mean prediction error (PE) and its standard deviation (SD), the median absolute error (MedAE), the mean absolute error (MAE) and the percentage of eyes with PEs within ± 0.25 D, ± 0.50 D and <  ± 1.00 D were calculated.

Results

The modern formulas (Barrett Universal II, Hoffer QST, Kane, Naeser 2 and VRF-G) produced the smallest MedAE among all methods (0.30 D, 0.30 D, 0.30 D, 0.29 D and 0.28 D, respectively). The percentage of eyes with a PE within ± 0.50 D ranged from 67.48% to 74.85% for SRK/T and Hoffer QST, Naeser 2 and VRF-G, respectively.

Conclusions

Dunn’s post hoc test of the absolute errors revealed statistically significant differences (P < 0.05) between some of the newer formulas (Naeser 2 and VRF-G) and the remaining ones. From a clinical perspective the Hoffer QST, Naeser 2 and VRF-G formulas were more accurate predictors of postoperative refraction with the largest proportion of eyes within ± 0.50 D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shammas J, Taroni L, Pellegrini M et al (2022) Accuracy of newer IOL power formulas in short and long eyes using sum-of-segments biometry. J Cataract Refract Surg 48:1113–1120. https://doi.org/10.1097/j.jcrs.0000000000000958

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hoffer KJ, Savini G (2017) IOL power calculation in short and long eyes. Asia Pac J Ophthalmol (Phila) 6:330–331. https://doi.org/10.22608/APO.2017338.

  3. Voytsekhivskyy O, Hoffer KJ, Savini G, Tutchenko L, Hipólito-Fernandes D (2021) Clinical Accuracy of 18 IOL power formulas in 241 short eyes. Curr Eye Res 46:1832–1843. https://doi.org/10.1080/02713683.2021.1933056

    Article  CAS  PubMed  Google Scholar 

  4. Liu J, Wang L, Chai F et al (2019) Comparison of intraocular lens power calculation formulas in Chinese eyes with axial myopia. J Cataract Refract Surg 45:725–731. https://doi.org/10.1016/j.jcrs.2019.01.018

    Article  PubMed  Google Scholar 

  5. Lin L, Xu M, Mo E et al (2021) Accuracy of newer generation IOL power calculation formulas in eyes with high axial myopia. J Refract Surg 37:754–758. https://doi.org/10.3928/1081597X-20210712-08

    Article  PubMed  Google Scholar 

  6. Mo E, Lin L, Wang J et al (2021) Clinical Accuracy of 6 intraocular lens power calculation formulas in elongated eyes, according to anterior chamber depth. Am J Ophthalmol 233:153–162. https://doi.org/10.1016/j.ajo.2021.07.017

    Article  PubMed  Google Scholar 

  7. Norrby S (2008) Sources of error in intraocular lens power calculation. J Cataract Refract Surg 34:368–376. https://doi.org/10.1016/j.jcrs.2007.10.031

    Article  PubMed  Google Scholar 

  8. Zaldivar R, Shultz MC, Davidorf MJ, Holladay JT (2000) Intraocular lens power calculations in patients with extreme myopia. J Cataract Refract Surg 26:668–674. https://doi.org/10.1016/s0886-3350(00)00367-9

    Article  CAS  PubMed  Google Scholar 

  9. MacLaren RE, Sagoo MS, Restori M, Allan BDS (2005) Biometry accuracy using zero- and negative-powered intraocular lenses. J Cataract Refract Surg 31:280–290. https://doi.org/10.1016/j.jcrs.2004.04.054

    Article  PubMed  Google Scholar 

  10. Haigis W, Lege B, Miller N, Schneider B (2000) Comparison of immersion ultrasound biometry and partial coherence interferometry for IOL calculation according to Haigis. Graefes Arch Clin Exp Ophthalmol 238:765–773. https://doi.org/10.1007/s004170000188

    Article  CAS  PubMed  Google Scholar 

  11. Wang L, Shirayama M, Ma XJ, Kohnen T, Koch DD (2011) Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm. J Cataract Refract Surg 37:2018–2027. https://doi.org/10.1016/j.jcrs.2011.05.042

    Article  PubMed  Google Scholar 

  12. Savini G, Hoffer KJ, Shammas HJ et al (2017) Accuracy of a new swept-source optical coherence tomography biometer for IOL power calculation and comparison to IOLMaster. J Refract Surg 33:690–695. https://doi.org/10.3928/1081597X-20170721-05

    Article  PubMed  Google Scholar 

  13. Hoffer KJ, Hoffmann PC, Savini G (2016) Comparison of a new optical biometer using swept-source optical coherence tomography and a biometer using optical low-coherence reflectometry. J Cataract Refract Surg 42:1165–1172. https://doi.org/10.1016/j.jcrs.2016.07.013

    Article  PubMed  Google Scholar 

  14. Barret GD (1993) An improved universal theoretical formula for intraocular lens power prediction. J Cataract Refract Surg 19:713–720. https://doi.org/10.1016/s0886-3350(13)80339-2

    Article  Google Scholar 

  15. Holladay JT, Prager TC, Chandler TY et al (1988) A three-part system for refining intraocular lens power calculations. J Cataract Refract Surg 14:17–24. https://doi.org/10.1016/s0886-3350(88)80059-2

    Article  CAS  PubMed  Google Scholar 

  16. Wang L, Koch DD (2018) Modified axial length adjustment formulas in long eyes. J Cataract Refract Surg 44:1396–1397. https://doi.org/10.1016/j.jcrs.2018.07.049

    Article  PubMed  Google Scholar 

  17. Wang L, Holladay JT, Koch DD (2018) Wang-Koch axial length adjustment for the Holladay 2 formula in long eyes. J Cataract Refract Surg 44:1291–1292; erratum (2019) 45:117. https://doi.org/10.1016/j.jcrs.2018.06.057, https://doi.org/10.1016/j.jcrs.2018.11.006.

  18. Melles RB, Kane JX, Olsen T, Chang WJ (2019) Update on intraocular lens power calculation formulas. Ophthalmology 126:1334–1335. https://doi.org/10.1016/j.ophtha.2019.04.011

    Article  PubMed  Google Scholar 

  19. Retzlaff JA, Sanders DR, Kraff MC (1990) Development of the SRK/T intraocular lens implant power calculation formula. J Cataract Refract Surg 16:333–340; erratum (1990) 528. https://doi.org/10.1016/s0886-3350(13)80705-5.

  20. Sheard RM, Smith GT, Cooke DL (2010) Improving the prediction accuracy of the SRK/T formula: the T2 formula. J Cataract Refract Surg 36:1829–1834. https://doi.org/10.1016/j.jcrs.2010.05.031

    Article  PubMed  Google Scholar 

  21. Voytsekhivskyy O (2018) Development and Clinical Accuracy of a New Intraocular Lens Power Formula (VRF) Compared to Other Formulas. Am J Ophthalmol 185:56–67. https://doi.org/10.1016/j.ajo.2017.10.020

    Article  PubMed  Google Scholar 

  22. Næser K, Savini G (2019) Accuracy of thick-lens intraocular lens power calculation based on cutting-card or calculated data for lens architecture. J Cataract Refract Surg 45:1422–1429. https://doi.org/10.1016/j.jcrs.2019.05.021

    Article  PubMed  Google Scholar 

  23. Hipólito-Fernandes D, Luís ME, Gil P et al (2020) VRF-G, a New Intraocular Lens Power Calculation Formula: A 13-Formulas Comparison Study. Clin Ophthalmol 14:4395–4402. https://doi.org/10.2147/OPTH.S290125

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang L, Koch DD, Hill W, Abulafia A (2017) Pursuing perfection in intraocular lens calculations: III. Criteria for analyzing outcomes. J Cataract Refract Surg 43:999–1002. https://doi.org/10.1016/j.jcrs.2017.08.003

    Article  PubMed  Google Scholar 

  25. Simpson MJ, Charman WN (2014) The effect of testing distance on intraocular lens power calculation. J Refract Surg 30:726. https://doi.org/10.3928/1081597X-20141021-01

    Article  PubMed  Google Scholar 

  26. Savini G, Taroni L, Schiano-Lomoriello D, Hoffer KJ (2021) Repeatability of total Keratometry and standard Keratometry by the IOLMaster 700 and comparison to total corneal astigmatism by Scheimpflug imaging. Eye 35:307–315. https://doi.org/10.1038/s41433-020-01245-8

    Article  PubMed  Google Scholar 

  27. Cheng H, Li W, Kane JX et al (2021) Accuracy of artificial intelligence formulas and axial length adjustments for highly myopic eyes. Am J Ophthalmol 223:100–107. https://doi.org/10.1016/j.ajo.2020.09.019

    Article  PubMed  Google Scholar 

  28. Cheng H, Liu L, Sun A, Wu M (2020) Accuracy of modified axial length adjustment for intraocular lens power calculation in Chinese axial myopic eyes. Curr Eye Res 45:827–833. https://doi.org/10.1080/02713683.2019.1698053

    Article  PubMed  Google Scholar 

  29. Savini G, Hoffer KJ, Balducci N et al (2020) Comparison of formula accuracy for intraocular lens power calculation based on measurements by a swept-source optical coherence tomography optical biometer. J Cataract Refract Surg 46:27–33. https://doi.org/10.1016/j.jcrs.2019.08.044

    Article  PubMed  Google Scholar 

  30. Darcy K, Gunn D, Tavassoli S et al (2020) Assessment of the accuracy of new and updated intraocular lens power calculation formulas in 10 930 eyes from the UK National Health Service. J Cataract Refract Surg 46:2–7. https://doi.org/10.1016/j.jcrs.2019.08.014

    Article  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Larysa Tutchenko. The first draft of the manuscript was written by Oleksiy Voytsekhivskyy and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Oleksiy Voytsekhivskyy.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. Data collection for this retrospective study was approved by the Kyiv Clinical Ophthalmology Hospital Eye Microsurgery Center, Kyiv, Ukraine (IRB-CME-202021-E).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

Dr. Voytsekhivskyy is the inventor and sole owner of the VRF and VRF-G formulas and has a patent on the method of estimation of postoperative lens position (ELP) and the calculation of optical power and is the author and copyright holder of a computer program VRF Suite V1.3.

Dr. Tutchenko declares no potential conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voytsekhivskyy, O., Tutchenko, L. Comparison of the prediction accuracy of 13 formulas in long eyes. Graefes Arch Clin Exp Ophthalmol 261, 2575–2583 (2023). https://doi.org/10.1007/s00417-023-06060-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-023-06060-x

Keywords

Navigation