Skip to main content

Advertisement

Log in

Current clinical applications of anterior segment optical coherence tomography angiography: a review

  • Review Article
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Optical coherence tomography (OCT) is a revolutionary in vivo imaging technology that presents real-time information on ocular structures. Angiography based on OCT, known as optical coherence tomography angiography (OCTA), is a noninvasive and time-saving technique originally utilized for visualizing retinal vasculature. As devices and built-in systems have evolved, high-resolution images with depth-resolved analysis have assisted ophthalmologists in accurately localizing pathology and monitoring disease progression. With the aforementioned advantages, application of OCTA has extended from the posterior to anterior segment. This nascent adaptation showed good delineation of the vasculature in the cornea, conjunctiva, sclera, and iris. Thus, neovascularization of the avascular cornea and hyperemia or ischemic changes involving the conjunctiva, sclera, and iris has become prospective applications for AS-OCTA. Although traditional dye-based angiography is regarded as the gold standard in demonstrating vasculature in the anterior segment, AS-OCTA is expected to be a comparable but more patient-friendly alternative. In its initial stage, AS-OCTA has exhibited great potential in pathology diagnosis, therapeutic evaluation, presurgical planning, and prognosis assessments in anterior segment disorders. In this review of AS-OCTA, we aim to summarize scanning protocols, relevant parameters, and clinical applications as well as limitations and future directions. We are sanguine about its wide application in the future with the development of technology and refinement in built-in systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Huang D, Swanson EA, Lin CP et al (1991) Optical coherence tomography. Science 254:1178–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baba T, Ohno-Matsui K, Futagami S et al (2003) Prevalence and characteristics of foveal retinal detachment without macular hole in high myopia. Am J Ophthalmol 135:338–342

    Article  PubMed  Google Scholar 

  3. Schuman JS, Hee MR, Puliafito CA et al (1995) Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol 113:586–596

    Article  CAS  PubMed  Google Scholar 

  4. Hee MR, Baumal CR, Puliafito CA et al (1996) Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. Ophthalmology 103:1260–1270

    Article  CAS  PubMed  Google Scholar 

  5. Hee MR, Puliafito CA, Duker JS et al (1998) Topography of diabetic macular edema with optical coherence tomography. Ophthalmology 105:360–370

    Article  CAS  PubMed  Google Scholar 

  6. Wilkins JR, Puliafito CA, Hee MR et al (1996) Characterization of epiretinal membranes using optical coherence tomography. Ophthalmology 103:2142–2151

    Article  CAS  PubMed  Google Scholar 

  7. Izatt JA, Hee MR, Swanson EA et al (1994) Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol 112:1584–1589

    Article  CAS  PubMed  Google Scholar 

  8. Dada T, Sihota R, Gadia R et al (2007) Comparison of anterior segment optical coherence tomography and ultrasound biomicroscopy for assessment of the anterior segment. J Cataract Refract Surg 33:837–840

    Article  PubMed  Google Scholar 

  9. Nolan WP, See JL, Chew PT et al (2007) Detection of primary angle closure using anterior segment optical coherence tomography in Asian eyes. Ophthalmology 114:33–39

    Article  PubMed  Google Scholar 

  10. Chen Q, Wang J, Tao A et al (2010) Ultrahigh-resolution measurement by optical coherence tomography of dynamic tear film changes on contact lenses. Invest Ophthalmol Vis Sci 51:1988–1993

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chan TCY, Biswas S, Yu M et al (2017) Comparison of corneal measurements in keratoconus using swept-source optical coherence tomography and combined Placido-Scheimpflug imaging. Acta Ophthalmol 95:e486–e494

    Article  CAS  PubMed  Google Scholar 

  12. Goldsmith JA, Li Y, Chalita MR et al (2005) Anterior chamber width measurement by high-speed optical coherence tomography. Ophthalmology 112:238–244

    Article  PubMed  Google Scholar 

  13. Wylegala E, Dobrowolski D, Nowinska A et al (2009) Anterior segment optical coherence tomography in eye injuries. Graefes Arch Clin Exp Ophthalmol 247:451–455

    Article  PubMed  Google Scholar 

  14. Li Y, Meisler DM, Tang M et al (2008) Keratoconus diagnosis with optical coherence tomography pachymetry mapping. Ophthalmology 115:2159–2166

    Article  PubMed  Google Scholar 

  15. Jancevski M, Foster CS (2010) Anterior segment optical coherence tomography. Semin Ophthalmol 25:317–323

    Article  PubMed  Google Scholar 

  16. Jia Y, Bailey ST, Wilson DJ et al (2014) Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology 121:1435–1444

    Article  PubMed  Google Scholar 

  17. Ishibazawa A, Nagaoka T, Takahashi A et al (2015) Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study. Am J Ophthalmol 160(35–44):e31

    Google Scholar 

  18. Bonini Filho MA, Adhi M, de Carlo TE et al (2015) Optical coherence tomography angiography in retinal artery occlusion. Retina 35:2339–2346

    Article  PubMed  Google Scholar 

  19. Suzuki N, Hirano Y, Yoshida M et al (2016) Microvascular abnormalities on optical coherence tomography angiography in macular edema associated with branch retinal vein occlusion. Am J Ophthalmol 161(126–132):e121

    Google Scholar 

  20. Balaratnasingam C, Inoue M, Ahn S et al (2016) Visual acuity is correlated with the area of the foveal avascular zone in diabetic retinopathy and retinal vein occlusion. Ophthalmology 123:2352–2367

    Article  PubMed  Google Scholar 

  21. Almeida I, Dias L, Jesus J et al (2022) Optical coherence tomography angiography in herpetic leucoma. BMC Med Imaging 22:17

    Article  PubMed  PubMed Central  Google Scholar 

  22. de Carlo TE, Romano A, Waheed NK et al (2015) A review of optical coherence tomography angiography (OCTA). Int J Retina Vitreous 1:5

    Article  PubMed  PubMed Central  Google Scholar 

  23. Novotny HR, Alvis DL (1961) A method of photographing fluorescence in circulating blood in the human retina. Circulation 24:82–86

    Article  CAS  PubMed  Google Scholar 

  24. Ang M, Cai Y, Shahipasand S et al (2016) En face optical coherence tomography angiography for corneal neovascularisation. Br J Ophthalmol 100:616–621

    Article  PubMed  Google Scholar 

  25. Brunner M, Romano V, Steger B et al (2018) Imaging of corneal neovascularization: optical coherence tomography angiography and fluorescence angiography. Invest Ophthalmol Vis Sci 59:1263–1269

    Article  PubMed  Google Scholar 

  26. Kiritoshi S, Oie Y, Nampei K et al (2019) Anterior segment optical coherence tomography angiography in patients following cultivated oral mucosal epithelial transplantation. Am J Ophthalmol 208:242–250

    Article  PubMed  Google Scholar 

  27. Binotti WW, Mills H, Nose RM et al (2021) Anterior segment optical coherence tomography angiography in the assessment of ocular surface lesions. Ocul Surf 22:86–93

    Article  PubMed  Google Scholar 

  28. Hau SC, Devarajan K, Ang M (2021) Anterior segment optical coherence tomography angiography and optical coherence tomography in the evaluation of episcleritis and scleritis. Ocul Immunol Inflamm 29:362–369

    Article  PubMed  Google Scholar 

  29. Akagi T, Fujimoto M, Ikeda HO (2020) Anterior segment optical coherence tomography angiography of iris neovascularization after intravitreal ranibizumab and panretinal photocoagulation. JAMA Ophthalmol 138:e190318

    Article  PubMed  Google Scholar 

  30. Shiozaki D, Sakimoto S, Shiraki A et al (2019) Observation of treated iris neovascularization by swept-source-based en-face anterior-segment optical coherence tomography angiography. Sci Rep 9:10262

    Article  PubMed  PubMed Central  Google Scholar 

  31. Devarajan K, Ong HS, Lwin NC et al (2019) Optical coherence tomography angiography imaging to monitor anti-VEGF treatment of corneal vascularization in a rabbit model. Sci Rep 9:17576

    Article  PubMed  PubMed Central  Google Scholar 

  32. Brouwer NJ, Marinkovic M, Bleeker JC et al (2021) Anterior segment OCTA of melanocytic lesions of the conjunctiva and iris. Am J Ophthalmol 222:137–147

    Article  PubMed  Google Scholar 

  33. Ang M, Sim DA, Keane PA et al (2015) Optical coherence tomography angiography for anterior segment vasculature imaging. Ophthalmology 122:1740–1747

    Article  PubMed  Google Scholar 

  34. Chan SY, Pan CT, Feng Y (2019) Localization of corneal neovascularization using optical coherence tomography angiography. Cornea 38:888–895

    Article  PubMed  Google Scholar 

  35. Ang M, Cai Y, MacPhee B et al (2016) Optical coherence tomography angiography and indocyanine green angiography for corneal vascularisation. Br J Ophthalmol 100:1557–1563

    Article  PubMed  Google Scholar 

  36. Stanzel TP, Devarajan K, Lwin NC et al (2018) Comparison of optical coherence tomography angiography to indocyanine green angiography and slit lamp photography for corneal vascularization in an animal model. Sci Rep 8:11493

    Article  PubMed  PubMed Central  Google Scholar 

  37. Devarajan K, Di Lee W, Ong HS et al (2019) Vessel density and En-face segmentation of optical coherence tomography angiography to analyse corneal vascularisation in an animal model. Eye Vis (Lond) 6:2

    Article  PubMed  Google Scholar 

  38. Nampei K, Oie Y, Kiritoshi S et al (2020) Comparison of ocular surface squamous neoplasia and pterygium using anterior segment optical coherence tomography angiography. Am J Ophthalmol Case Rep 20:100902

    Article  PubMed  PubMed Central  Google Scholar 

  39. Skalet AH, Li Y, Lu CD et al (2017) Optical coherence tomography angiography characteristics of iris melanocytic tumors. Ophthalmology 124:197–204

    Article  PubMed  Google Scholar 

  40. Zhao F, Cai S, Huang Z et al (2020) Optical coherence tomography angiography in pinguecula and pterygium. Cornea 39:99–103

    Article  PubMed  Google Scholar 

  41. Binotti WW, Nose RM, Koseoglu ND et al (2021) The utility of anterior segment optical coherence tomography angiography for the assessment of limbal stem cell deficiency. Ocul Surf 19:94–103

    Article  PubMed  Google Scholar 

  42. Oie Y, Nishida K (2017) Evaluation of corneal neovascularization using optical coherence tomography angiography in patients with limbal stem cell deficiency. Cornea 36(Suppl 1):S72–S75

    Article  PubMed  Google Scholar 

  43. Varma S, Shanbhag SS, Donthineni PR et al (2021) High-Resolution optical coherence tomography angiography characteristics of limbal stem cell deficiency. Diagnostics (Basel) 11:1130

  44. Riedl JC, Wasielica-Poslednik J, Weyer-Elberich V et al (2018) Visualization of corneal vascularization in peripheral hypertrophic subepithelial corneal opacification with OCT angiography. Acta Ophthalmol 96:e974–e978

    Article  PubMed  Google Scholar 

  45. Ang M, Foo V, Ke M et al (2021) Role of anterior segment optical coherence tomography angiography in assessing limbal vasculature in acute chemical injury of the eye. Br J Ophthalmol 106:1212–1216

  46. Fung SSM, Stewart RMK, Dhallu SK et al (2019) Anterior segment optical coherence tomographic angiography assessment of acute chemical injury. Am J Ophthalmol 205:165–174

    Article  PubMed  Google Scholar 

  47. Furundaoturan O, Palamar M,Barut Selver O (2022) Precision of limbal ischemia evaluation in ocular chemical injuries with anterior segment optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol 261:155–159

  48. Luisi J, Kraft ER, Giannos SA et al (2021) Longitudinal assessment of alkali injury on mouse cornea using anterior segment optical coherence tomography. Transl Vis Sci Technol 10:6

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tey KY, Gan J, Foo V et al (2021) Role of anterior segment optical coherence tomography angiography in the assessment of acute chemical ocular injury: a pilot animal model study. Sci Rep 11:16625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bostanci Ceran B, Ozates S, Arifoglu HB et al (2021) Changes in limbal optical coherence tomography angiography outcomes in patients with overnight contact lens wear. Eye Contact Lens 47:552–554

    Article  PubMed  Google Scholar 

  51. Gimenez-Sanchis I, Palacios-Carmen B, Garcia-Garrigos A et al (2018) Anterior segment optical coherence tomography angiography to evaluate the peripheral fitting of scleral contact lenses. Clin Optom (Auckl) 10:103–108

    Article  PubMed  Google Scholar 

  52. Jesus J, Dias L, Almeida I et al (2022) Analysis of conjunctival vascular density in scleral contact lens wearers using optical coherence tomography angiography. Cont Lens Anterior Eye 45:101403

    Article  PubMed  Google Scholar 

  53. Yang QC, Yao F, Li QY et al (2022) Ocular microvascular alteration in Sjögren syndrome. Quant Imaging Med Surg 12:1324–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jia Y, Xue W, Wang Y et al (2022) Quantitative changes in iris vasculature and blood flow in patients with different refractive errors. Graefes Arch Clin Exp Ophthalmol 260:3123–3129

    Article  PubMed  Google Scholar 

  55. Schuerch K, Frech H, Zinkernagel M (2020) Conjunctival microangiopathy in diabetes mellitus assessed with optical coherence tomography angiography. Transl Vis Sci Technol 9:10

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jia Y, Xue W, Tong X et al (2021) Quantitative analysis and clinical application of iris circulation in ischemic retinal disease. BMC Ophthalmol 21:393

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zicarelli F, Parrulli S, Torre A et al (2022) Optical coherence tomography angiography findings of iris ischemia and reperfusion in cytomegalovirus panuveitis. Ocul Immunol Inflamm 30:1595–1598

    Article  CAS  PubMed  Google Scholar 

  58. Akagi T, Uji A, Okamoto Y et al (2019) Anterior segment optical coherence tomography angiography imaging of conjunctiva and intrasclera in treated primary open-angle glaucoma. Am J Ophthalmol 208:313–322

    Article  PubMed  Google Scholar 

  59. Pichi F, Woodstock E, Hay S et al (2020) Optical coherence tomography angiography findings in systemic lupus erythematosus patients with no ocular disease. Int Ophthalmol 40:2111–2118

    Article  PubMed  Google Scholar 

  60. Ang M, Sng C, Milea D (2016) Optical coherence tomography angiography in dural carotid-cavernous sinus fistula. BMC Ophthalmol 16:93

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mc Glacken-Byrne AB, Prentice D, Roshandel D et al (2020) High-resolution iris and retinal imaging in multisystemic smooth muscle dysfunction syndrome due to a novel Asn117Lys substitution in ACTA2: a case report. BMC Ophthalmol 20:68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yamamoto A, Miyata M, Suda K (2019) Conjunctival and episcleral blood flow restoration after strabismus surgery on swept-source optical coherence tomography angiography. JAMA Ophthalmol 137:e190043

    Article  PubMed  Google Scholar 

  63. Velez FG, Davila JP, Diaz A et al (2018) Association of change in iris vessel density in optical coherence tomography angiography with anterior segment ischemia after strabismus surgery. JAMA Ophthalmol 136:1041–1045

    Article  PubMed  PubMed Central  Google Scholar 

  64. Aicher NT, Nagahori K, Inoue M et al (2020) Vascular density of the anterior segment of the eye determined by optical coherence tomography angiography and slit-lamp photography. Ophthalmic Res 63:572–579

    Article  PubMed  Google Scholar 

  65. Gan J, Sng CCA, Ke M et al (2022) Anterior segment optical coherence tomography angiography following trabecular bypass minimally invasive glaucoma surgery. Front Med (Lausanne) 9:830678

    Article  PubMed  PubMed Central  Google Scholar 

  66. Cui L, Xue W, Yao W et al (2022) Quantitative changes in iris and retinal blood flow after femtosecond laser-assisted in situ keratomileusis and small-incision lenticule extraction. Front Med (Lausanne) 9:862195

    Article  PubMed  Google Scholar 

  67. D'Aloisio R, Viggiano P, Borrelli E et al (2020) Changes in iris perfusion following scleral buckle surgery for rhegmatogenous retinal detachment: an anterior segment optical coherence tomography angiography (AS-OCTA) study. J Clin Med 9:1231

  68. Foo VHX, Ke M, Tan CQL et al (2021) Anterior segment optical coherence tomography angiography assessment of corneal vascularisation after combined fine-needle diathermy with subconjunctival ranibizumab: a pilot study. Adv Ther 38:4333–4343

    Article  CAS  PubMed  Google Scholar 

  69. Ong HS, Tey KY, Ke M et al (2021) A pilot study investigating anterior segment optical coherence tomography angiography as a non-invasive tool in evaluating corneal vascularisation. Sci Rep 11:1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cai Y, Alio Del Barrio JL, Wilkins MR et al (2017) Serial optical coherence tomography angiography for corneal vascularization. Graefes Arch Clin Exp Ophthalmol 255:135–139

    Article  PubMed  Google Scholar 

  71. Theotoka D, Liu Z, Wall S et al (2022) Optical coherence tomography angiography in the evaluation of vascular patterns of ocular surface squamous neoplasia during topical medical treatment. Ocul Surf 25:8–18

    Article  PubMed  PubMed Central  Google Scholar 

  72. Keshet Y, Polat A, Gal-Or O et al (2021) Limbal-conjunctival autograft healing process-early postoperative OCT angiography study. Eye (Lond) 36:2151–2156

  73. Liu YC, Devarajan K, Tan TE et al (2019) Optical coherence tomography angiography for evaluation of reperfusion after pterygium surgery. Am J Ophthalmol 207:151–158

    Article  PubMed  Google Scholar 

  74. Zhao Z, Yue Y, Zhang S et al (2020) Optical coherence tomography angiography for marginal corneal vascular remodelling after pterygium surgery with limbal-conjunctival autograft. Eye (Lond) 34:2054–2062

    Article  PubMed  Google Scholar 

  75. Akagi T, Okamoto Y, Kameda T et al (2020) Short-term effects of different types of anti-glaucoma eyedrop on the sclero-conjunctival vasculature assessed using anterior segment octa in normal human eyes: a pilot study. J Clin Med 9:4016

  76. Okamoto Y, Akagi T, Kameda T et al (2021) Prediction of trabecular meshwork-targeted micro-invasive glaucoma surgery outcomes using anterior segment OCT angiography. Sci Rep 11:17850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Seo JH, Lee Y, Shin JH et al (2019) Comparison of conjunctival vascularity changes using optical coherence tomography angiography after trabeculectomy and phacotrabeculectomy. Graefes Arch Clin Exp Ophthalmol 257:2239–2255

    Article  PubMed  Google Scholar 

  78. Kido A, Akagi T, Ikeda HO et al (2021) Longitudinal changes in complete avascular area assessed using anterior segmental optical coherence tomography angiography in filtering trabeculectomy bleb. Sci Rep 11:23418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Luo M, Zhu Y, Xiao H et al  (2022) Characteristic assessment of angiographies at different depths with AS-OCTA: implication for functions of post-trabeculectomy filtering bleb. J Clin Med 11:1661

  80. Mastropasqua R, Brescia L, Di Antonio L et al (2020) Angiographic biomarkers of filtering bleb function after XEN gel implantation for glaucoma: an optical coherence tomography-angiography study. Acta Ophthalmol 98:e761–e767

    Article  PubMed  Google Scholar 

  81. Seo JH, Kim YA, Park KH et al (2019) Evaluation of functional filtering bleb using optical coherence tomography angiography. Transl Vis Sci Technol 8:14

    Article  PubMed  PubMed Central  Google Scholar 

  82. Yin X, Cai Q, Song R et al (2018) Relationship between filtering bleb vascularization and surgical outcomes after trabeculectomy: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol 256:2399–2405

    Article  PubMed  Google Scholar 

  83. Hayek S, Labbe A, Brasnu E et al (2019) Optical coherence tomography angiography evaluation of conjunctival vessels during filtering surgery. Transl Vis Sci Technol 8:4

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kadomoto S, Uji A, Tsujikawa A (2018) Anterior segment optical coherence tomography angiography in a patient with persistent pupillary membrane. JAMA Ophthalmol 136:e182932

    Article  PubMed  Google Scholar 

  85. Allegrini D, Montesano G, Pece A (2016) Optical coherence tomography angiography of iris nevus: a case report. Case Rep Ophthalmol 7:172–178

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chien JL, Sioufi K, Ferenczy S et al (2017) Optical coherence tomography angiography features of iris racemose hemangioma in 4 cases. JAMA Ophthalmol 135:1106–1110

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kang AS, Welch RJ, Sioufi K et al (2017) Optical coherence tomography angiography of iris microhemangiomatosis. Am J Ophthalmol Case Rep 6:24–26

    Article  PubMed  PubMed Central  Google Scholar 

  88. Williams BK Jr, Di Nicola M, Ferenczy S et al (2018) Iris microhemangiomatosis: clinical, fluorescein angiography, and optical coherence tomography angiography features in 14 consecutive patients. Am J Ophthalmol 196:18–25

    Article  PubMed  Google Scholar 

  89. Kose HC, Gunduz K, Hosal MB (2020) Iris cysts: clinical features, imaging findings, and treatment results. Turk J Ophthalmol 50:31–36

    Article  PubMed  PubMed Central  Google Scholar 

  90. Nagarkatti-Gude N, Li Y, Huang D et al (2018) Optical coherence tomography angiography of a pigmented Fuchs’ adenoma (age-related hyperplasia of the nonpigmented ciliary body epithelium) masquerading as a ciliary body melanoma. Am J Ophthalmol Case Rep 9:72–74

    Article  PubMed  PubMed Central  Google Scholar 

  91. Chien JL, Sioufi K, Shields CL (2017) Optical coherence tomography angiography of conjunctival racemose hemangioma. Ophthalmology 124:449

    Article  PubMed  Google Scholar 

  92. Cai S, Zhao F, Du C (2019) Repeatability of ocular surface vessel density measurements with optical coherence tomography angiography. BMC Ophthalmol 19:248

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zhang X, Beckmann L, Miller DA et al (2020) In vivo imaging of schlemm’s canal and limbal vascular network in mouse using visible-light OCT. Invest Ophthalmol Vis Sci 61:23

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ang M, Cai Y, Tan AC (2016) Swept source optical coherence tomography angiography for contact lens-related corneal vascularization. J Ophthalmol 2016:9685297

    Article  PubMed  PubMed Central  Google Scholar 

  95. Akagi T, Uji A, Huang AS et al (2018) Conjunctival and intrascleral vasculatures assessed using anterior segment optical coherence tomography angiography in normal eyes. Am J Ophthalmol 196:1–9

    Article  PubMed  PubMed Central  Google Scholar 

  96. Liu Z, Wang H, Jiang H et al (2019) Quantitative analysis of conjunctival microvasculature imaged using optical coherence tomography angiography. Eye Vis (Lond) 6:5

    Article  PubMed  Google Scholar 

  97. Ang M, Devarajan K, Das S et al (2018) Comparison of anterior segment optical coherence tomography angiography systems for corneal vascularisation. Br J Ophthalmol 102:873–877

    Article  PubMed  Google Scholar 

  98. Binotti WW, Koseoglu ND, Nose RM et al (2021) Novel parameters to assess the severity of corneal neovascularization using anterior segment optical coherence tomography angiography. Am J Ophthalmol 222:206–217

    Article  PubMed  Google Scholar 

  99. Lee WD, Devarajan K, Chua J et al (2019) Optical coherence tomography angiography for the anterior segment. Eye Vis (Lond) 6:4

    Article  PubMed  Google Scholar 

  100. Pichi F, Roberts P, Neri P (2019) The broad spectrum of application of optical coherence tomography angiography to the anterior segment of the eye in inflammatory conditions: a review of the literature. J Ophthalmic Inflamm Infect 9:18

    Article  PubMed  PubMed Central  Google Scholar 

  101. Anijeet DR, Zheng Y, Tey A et al (2012) Imaging and evaluation of corneal vascularization using fluorescein and indocyanine green angiography. Invest Ophthalmol Vis Sci 53:650–658

    Article  PubMed  Google Scholar 

  102. Lucentini S, Ikesugi K, Bonsignore F et al (2022) Optical coherence tomography angiography application to pigmented iris: Could a new index quantify blood flow? Eur J Ophthalmol 32:1772–1781

    Article  PubMed  Google Scholar 

  103. Jiang H, Zhong J, DeBuc DC et al (2014) Functional slit lamp biomicroscopy for imaging bulbar conjunctival microvasculature in contact lens wearers. Microvasc Res 92:62–71

    Article  PubMed  PubMed Central  Google Scholar 

  104. Liu Z, Karp CL, Galor A et al (2020) Role of optical coherence tomography angiography in the characterization of vascular network patterns of ocular surface squamous neoplasia. Ocul Surf 18:926–935

    Article  PubMed  PubMed Central  Google Scholar 

  105. Rosenthal P, Croteau A (2005) Fluid-ventilated, gas-permeable scleral contact lens is an effective option for managing severe ocular surface disease and many corneal disorders that would otherwise require penetrating keratoplasty. Eye Contact Lens 31:130–134

    Article  PubMed  Google Scholar 

  106. Cairns JE (1968) Trabeculectomy. Preliminary report of a new method. Am J Ophthalmol 66:673–679

    Article  CAS  PubMed  Google Scholar 

  107. Tsatsos M, MacGregor C, Athanasiadis I et al (2016) Herpes simplex virus keratitis: an update of the pathogenesis and current treatment with oral and topical antiviral agents. Clin Exp Ophthalmol 44:824–837

    Article  PubMed  Google Scholar 

  108. Dua HS, Saini JS, Azuara-Blanco A et al (2000) Limbal stem cell deficiency: concept, aetiology, clinical presentation, diagnosis and management. Indian J Ophthalmol 48:83–92

    CAS  PubMed  Google Scholar 

  109. Bachmann B, Taylor RS, Cursiefen C (2010) Corneal neovascularization as a risk factor for graft failure and rejection after keratoplasty: an evidence-based meta-analysis. Ophthalmology 117(1300–1305):e1307

    Google Scholar 

  110. Hill JC (2002) High risk corneal grafting. Br J Ophthalmol 86:945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sivak-Callcott JA, O’Day DM, Gass JD et al (2001) Evidence-based recommendations for the diagnosis and treatment of neovascular glaucoma. Ophthalmology 108:1767–1776 (quiz1777, 1800)

    Article  CAS  PubMed  Google Scholar 

  112. Ang M, Devarajan K, Tan AC et al (2021) Anterior segment optical coherence tomography angiography for iris vasculature in pigmented eyes. Br J Ophthalmol 105:929–934

    Article  PubMed  Google Scholar 

  113. Allegrini D, Montesano G, Pece A (2016) Optical coherence tomography angiography in a normal iris. Ophthalmic Surg Lasers Imaging Retina 47:1138–1139

    Article  PubMed  Google Scholar 

  114. Roberts PK, Goldstein DA, Fawzi AA (2017) Anterior segment optical coherence tomography angiography for identification of iris vasculature and staging of iris neovascularization: a pilot study. Curr Eye Res 42:1136–1142

    Article  PubMed  PubMed Central  Google Scholar 

  115. Zett C, Stina DMR, Kato RT et al (2018) Comparison of anterior segment optical coherence tomography angiography and fluorescein angiography for iris vasculature analysis. Graefes Arch Clin Exp Ophthalmol 256:683–691

    Article  PubMed  Google Scholar 

  116. Chan TK, Rosenbaum AL, Rao R et al (2001) Indocyanine green angiography of the anterior segment in patients undergoing strabismus surgery. Br J Ophthalmol 85:214–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wand M, Dueker DK, Aiello LM et al (1978) Effects of panretinal photocoagulation on rubeosis iridis, angle neovascularization, and neovascular glaucoma. Am J Ophthalmol 86:332–339

    Article  CAS  PubMed  Google Scholar 

  118. Oshima Y, Sakaguchi H, Gomi F et al (2006) Regression of iris neovascularization after intravitreal injection of bevacizumab in patients with proliferative diabetic retinopathy. Am J Ophthalmol 142:155–158

    Article  CAS  PubMed  Google Scholar 

  119. Jia Y, Bailey ST, Hwang TS et al (2015) Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci U S A 112:E2395-2402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kate A,Basu S (2022) Role of anterior segment-optical coherence tomography angiography in acute ocular burns. Diagnostics (Basel) 12:607

  121. Spiteri N, Romano V, Zheng Y et al (2015) Corneal angiography for guiding and evaluating fine-needle diathermy treatment of corneal neovascularization. Ophthalmology 122:1079–1084

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Grant numbers 8217102 and 82000909).

Author information

Authors and Affiliations

Authors

Contributions

Wen, Yajing, had the idea for the article and drafted the work. Wen, Yajing, and Tang, Kexin, performed the literature search. Jiang, Dan, and Chen, Wei, critically revised the work.

Corresponding author

Correspondence to Wei Chen.

Ethics declarations

Ethical approval

This article does not contain any studies with humans or animals performed by any of the authors.

Informed consent

Not applicable to a review.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Y., Jiang, D., Tang, K. et al. Current clinical applications of anterior segment optical coherence tomography angiography: a review. Graefes Arch Clin Exp Ophthalmol 261, 2729–2741 (2023). https://doi.org/10.1007/s00417-023-05997-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-023-05997-3

Keywords

Navigation