Skip to main content

Advertisement

Log in

Artificial intelligence using deep learning to predict the anatomical outcome of rhegmatogenous retinal detachment surgery: a pilot study

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To develop and evaluate an automated deep learning model to predict the anatomical outcome of rhegmatogenous retinal detachment (RRD) surgery.

Methods

Six thousand six hundred and sixty-one digital images of RRD treated by vitrectomy and internal tamponade were collected from the British and Eire Association of Vitreoretinal Surgeons database. Each image was classified as a primary surgical success or a primary surgical failure. The synthetic minority over-sampling technique was used to address class imbalance. We adopted the state-of-the-art deep convolutional neural network architecture Inception v3 to train, validate, and test deep learning models to predict the anatomical outcome of RRD surgery. The area under the curve (AUC), sensitivity, and specificity for predicting the outcome of RRD surgery was calculated for the best predictive deep learning model.

Results

The deep learning model was able to predict the anatomical outcome of RRD surgery with an AUC of 0.94, with a corresponding sensitivity of 73.3% and a specificity of 96%.

Conclusion

A deep learning model is capable of accurately predicting the anatomical outcome of RRD surgery. This fully automated model has potential application in surgical care of patients with RRD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Mitry D, Charteris DG, Fleck BW, Campbell H, Singh J (2010) The epidemiology of rhegmatogenous retinal detachment: geographical variation and clinical associations. Br J Ophthalmol 94:678–684

    Article  CAS  PubMed  Google Scholar 

  2. Wickham L, Bunce C, Wong D, Charteris DG (2011) Retinal detachment repair by vitrectomy: simplified formulae to estimate the risk of failure. Br J Ophthalmol 95:1239–1244

    Article  CAS  PubMed  Google Scholar 

  3. Wickham L, Ho-Yen GO, Bunce C, Wong D, Charteris DG (2011) Surgical failure following primary retinal detachment surgery by vitrectomy: risk factors and functional outcomes. Br J Ophthalmol 95:1234–1238

    Article  PubMed  Google Scholar 

  4. Williamson TH, Lee EJK, Shunmugam M (2014) Characteristics of rhegmatogenous retinal detachment and their relationship to success rates of surgery. Retina 34:1421–1427

    Article  PubMed  Google Scholar 

  5. Mitry D, Awan MA, Borooah S et al (2012) Surgical outcome and risk stratification for primary retinal detachment repairs: results from the Scottish Retinal Detachment study. Br J Ophthalmol 96:730–734

    Article  CAS  PubMed  Google Scholar 

  6. Thompson JA, Snead MP, Billington BM, Barrie T, Thompson JR, Sparrow JM (2002) National audit of the outcome of primary surgery for rhegmatogenous retinal detachment. II Clinical outcomes. Eye (Lond) 16:771–777

    Article  CAS  PubMed  Google Scholar 

  7. Pastor JC, Fernandez I, Rodriguez de la Rua E et al (2008) Surgical outcomes for primary rhegmatogenous retinal detachments in phakic and pseudophakic patients: the Retina 1 project – report 2. Br J Ophthalmol 92:378–382

    Article  CAS  PubMed  Google Scholar 

  8. Feltgen N, Heimann H, Hoerauf H, Walter P, Hilgers R-D, Heussen N (2013) Scleral buckling versus primary vitrectomy in rhegmatogenous retinal detachment study (SPR study): risk assessment of anatomical outcome. SPR study report no.7. Acta Ophthalmol 91:282–287

    Article  PubMed  Google Scholar 

  9. Adelman RA, Parnes AJ, Michalewska Z, Ducournau D (2014) Clinical variables associated with failure of retinal detachment repair: the European vitreo-retinal society retinal detachment study report number 4. Ophthalmology 121:1715–1719

    Article  PubMed  Google Scholar 

  10. Haugstad M, Moosmayer S, Bragadottir R (2017) Primary rhegmatogenous retinal detachment – surgical methods and anatomical outcome. Acta Ophthalmol 95:247–251

    Article  PubMed  Google Scholar 

  11. Bonde A, Varadarajan KM, Bonde N et al (2021) Assessing the utility of deep neural networks in predicting postoperative surgical complications: a retrospective study. Lancet Digit Health 3:e471-485

    Article  CAS  PubMed  Google Scholar 

  12. Ferrara M, Mehta A, Qureshi H et al (2021) Phenotype and outcomes of phakic versus pseudophakic primary rhegmatogenous retinal detachments: cataract or cataract surgery related? Am J Ophthalmol 222:318–327

    Article  PubMed  Google Scholar 

  13. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357

    Article  Google Scholar 

  14. Fernandez A, Garcia S, Herrera F, Chawla NV (2018) SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary. J Artif Intell Res 61:863–905

    Article  Google Scholar 

  15. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. ImageNet: a large-scale hierarchical image database. Paper presented at: 2009 Institute of Electrical and Electronics Engineers Conference on Computer Vision and Pattern Recognition; June 20–25, 2009; Miami, FL

  16. Yosinski J, Clune J, Bengio Y, Lipson H. How transferable are features in deep neural networks? Paper presented at: 27th International Conference on Neural Information Processing Systems; December 8–13, 2014: Montreal, Quebec, Canada

  17. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: visual explanations from deep networks via gradient-based localization. Paper presented at: 2017 Institute of Electrical and Electronics Engineers International Conference on Computer Vision; October 22–29, 2017; Venice, Italy

  18. Sinthanayothin C, Boyce JF, Cook HL, Williamson TH (1999) Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. Br J Ophthalmol 83:902–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gardner GG, Keating D, Williamson TH, Elliott AT (1996) Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool. Br J Ophthalmol 80:940–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Usher D, Dumskyjs M, Himaga M, Williamson TH, Nussey S, Boyce J (2004) Automated detection of diabetic retinopathy in digital retinal images: a tool for diabetic retinopathy screening. Diabet Med 21:84–90

    Article  CAS  PubMed  Google Scholar 

  21. Gulshan V, Peng L, Coram M et al (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316:2402–2410

    Article  PubMed  Google Scholar 

  22. Bellermo V, Lim ZW, Lim G et al (2019) Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. Lancet Digit Health 1:e35–e44

    Article  Google Scholar 

  23. Ting DSW, Cheung CY-L, Lim G et al (2017) Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 318:2211–2223

    Article  PubMed  PubMed Central  Google Scholar 

  24. Burlina PM, Joshi N, Pekala M, Pacheco KD, Freund DE, Bressler NM (2017) Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA Ophthalmol 135:1170–1176

    Article  PubMed  PubMed Central  Google Scholar 

  25. Brown JM, Campbell JP, Beers A et al (2018) Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks. JAMA Ophthalmol 136:803–810

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hu Y, Xiao Y, Quan W et al (2021) A multi-center study of prediction of macular hole status after vitrectomy and internal limiting membrane peeling by a deep learning model. Ann Transl Med 9:51

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chattopadhay A, Sarkar A, Howlader P, Balasubramanian VN. Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks. Paper presented at: 2018 Institute of Electrical and Electronics Engineers Winter Conference on Applications of Computer Vision; March 12–15, 2018; Lake Tahoe, NV

  28. Draelos RL, Carin L. Use HiResCAM instead of Grad-CAM for faithful explanations of convolutional neural networks. arXiv:2011.08891 [Pre-print]. November 21, 2021 [cited 2022 Apr 11] https://doi.org/10.48550/arXiv.2011.08891

  29. Kornberg DL, Klufas MA, Yannuzzi NA, Orlin A, D’Amico DJ, Kiss S (2016) Clinical utility of ultra-widefield imaging with the optos optomap compared with indirect ophthalmoscopy in the setting of non-traumatic rhegmatogenous retinal detachment. Semin Ophthalmol 31:505–512

    PubMed  Google Scholar 

  30. Khandhadia S, Madhusudhana KC, Kostakou A, Forrester JV, Newsom RSB (2009) Use of optomap for retinal screening within an eye casualty setting. Br J Ophthalmol 93:52–55

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Members of the BEAVRS Retinal Detachment Outcomes Group: A.G. Casswell, Andrew H.C. Morris, Assad Jalil, Atiq R. Babar, Craig Goldsmith, David H.W. Steel, Diego Sanchez-Chicharro, E.D. Hughes, E.N. Herbert, Huw Jenkins, Imran J. Khan, John D. Ellis, Jonathan Smith, Kamaljit S. Balaggan, Kurt Spiteri Cornish, Laura Wakeley, Mark Costen, Sonali Tarafdar, Stephen J. Charles, Stephen Winder, Timothy Cochrane, Tsveta Ivanova, Vasileios T. Papastavrou, Vaughan Tanner, David Yorston, D. Alistair Laidlaw, Tom H. Williamson

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Timothy H. M. Fung.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fung, T.H.M., John, N.C.R.A., Guillemaut, JY. et al. Artificial intelligence using deep learning to predict the anatomical outcome of rhegmatogenous retinal detachment surgery: a pilot study. Graefes Arch Clin Exp Ophthalmol 261, 715–721 (2023). https://doi.org/10.1007/s00417-022-05884-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-022-05884-3

Keywords

Navigation