Skip to main content

Advertisement

Log in

The thickness of the outer retina in the macula and circumpapillary area in patients with unilateral advanced glaucoma

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To compare outer macular and retinal thickness in the circumpapillary area in unilateral advanced glaucomatous eyes to the normal or mild glaucomatous fellow eyes.

Methods

Seventy-eight eyes of 39 patients with unilateral advanced glaucoma (mean deviation (MD) worse than –12.00 dB based on visual field 24-2) were included in this cross-sectional study as the cases. The healthy or mild glaucomatous fellow eyes were enrolled as the control group. All eyes underwent optical coherence tomography of the macula and circumpapillary retina by Topcon DRI Triton (Topcon, Tokyo, Japan). Ganglion cell layer 2+ was considered as the inner retina. Total retinal thickness minus the thickness of the inner retina was considered as the outer retina. Comparison between groups was done by paired-sample sign test. The correlation between structural and functional parameters was evaluated by a partial correlation coefficient.

Results

Seventeen (43.6%), 15 (38.5%), and 7 (17.9%) patients had pseudoexfoliation, primary angle-closure, and primary open-angle glaucoma, respectively. The mean age was 62.69 ± 12.00 years. Thirty-three (84.6%) patients were male. The outer retinal thickness in the circumpapillary area was higher in temporal, superior, and inferior quadrants (p < 0.05). The outer macula in different parafoveal and perifoveal quadrants was also thicker (p < 0.05). Average outer parafoveal thickness in the case group had a significant negative correlation with MD (r = –0.339; p = 0.035).

Conclusion

Advanced glaucomatous eyes had a thicker outer retina in the macula and circumpapillary area. There was a significant negative correlation between outer perifoveal thickness and MD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, [SMT], upon reasonable request.

Code availability

Not Applicable.

References

  1. Resnikoff S, Pascolini D, Etya'ale D, Kocur I, Pararajasegaram R, Pokharel GP, Mariotti SP (2004) Global data on visual impairment in the year 2002. Bull World Health Organ 82(11):844–851

    PubMed  PubMed Central  Google Scholar 

  2. Flammer J, Mozaffarieh M (2007) What is the present pathogenetic concept of glaucomatous optic neuropathy? Surv Ophthalmol 52(Suppl 2):S162–S173. https://doi.org/10.1016/j.survophthal.2007.08.012

    Article  PubMed  Google Scholar 

  3. Guo L, Moss SE, Alexander RA, Ali RR, Fitzke FW, Cordeiro MF (2005) Retinal ganglion cell apoptosis in glaucoma is related to intraocular pressure and IOP-induced effects on extracellular matrix. Invest Ophthalmol Vis Sci 46(1):175–182. https://doi.org/10.1167/iovs.04-0832

    Article  PubMed  Google Scholar 

  4. Heijl A, Leske MC, Bengtsson B, Bengtsson B, Hussein M, Early Manifest Glaucoma Trial Group (2003) Measuring visual field progression in the Early Manifest Glaucoma Trial. Acta Ophthalmol Scand 81(3):286–293. https://doi.org/10.1034/j.1600-0420.2003.00070.x

    Article  PubMed  Google Scholar 

  5. Artes PH, Chauhan BC, Keltner JL, Cello KE, Johnson CA, Anderson DR, Gordon MO, Kass MA, Ocular Hypertension Treatment Study Group (2010) Longitudinal and cross-sectional analyses of visual field progression in participants of the Ocular Hypertension Treatment Study. Arch Ophthalmol (Chicago, Ill. : 1960) 128(12):1528–1532. https://doi.org/10.1001/archophthalmol.2010.292

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nouri-Mahdavi K, Nassiri N, Giangiacomo A, Caprioli J (2011) Detection of visual field progression in glaucoma with standard achromatic perimetry: a review and practical implications. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 249(11):1593–1616. https://doi.org/10.1007/s00417-011-1787-5

    Article  PubMed  Google Scholar 

  7. Chan CK, Miller NR (2007) Peripapillary nerve fiber layer thickness measured by optical coherence tomography in patients with no light perception from long-standing nonglaucomatous optic neuropathies. J Neuro-ophthalmol 27(3):176–179. https://doi.org/10.1097/WNO.0b013e31814b1ac4

    Article  Google Scholar 

  8. Mwanza JC, Budenz DL, Warren JL, Webel AD, Reynolds CE, Barbosa DT, Lin S (2015) Retinal nerve fibre layer thickness floor and corresponding functional loss in glaucoma. Br J Ophthalmol 99(6):732–737. https://doi.org/10.1136/bjophthalmol-2014-305745

    Article  PubMed  Google Scholar 

  9. Bowd C, Zangwill LM, Weinreb RN, Medeiros FA, Belghith A (2017) Estimating optical coherence tomography structural measurement floors to improve detection of progression in advanced glaucoma. Am J Ophthalmol 175:37–44. https://doi.org/10.1016/j.ajo.2016.11.010

    Article  PubMed  Google Scholar 

  10. Belghith A, Medeiros FA, Bowd C, Liebmann JM, Girkin CA, Weinreb RN, Zangwill LM (2016) Structural change can be detected in advanced-glaucoma eyes. Invest Ophthalmol Vis Sci 57(9):OCT511–OCT518. https://doi.org/10.1167/iovs.15-18929

    Article  PubMed Central  Google Scholar 

  11. Pokorny J, Smith VC (1986) Eye disease and color defects. Vis Res 26(9):1573–1584. https://doi.org/10.1016/0042-6989(86)90176-8

    Article  CAS  PubMed  Google Scholar 

  12. Wilsey LJ, Fortune B (2016) Electroretinography in glaucoma diagnosis. Curr Opin Ophthalmol 27(2):118–124. https://doi.org/10.1097/ICU.0000000000000241

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hoddap E, Parrish RK, Anderson DR (1993) Clinical Decisions in Glaucoma, Mosby

  14. Bengtsson B, Heijl A (2008) A visual field index for calculation of glaucoma rate of progression. Am J Ophthalmol 145(2):343–353. https://doi.org/10.1016/j.ajo.2007.09.038

    Article  PubMed  Google Scholar 

  15. Tan NY, Koh V, Girard MJ, Cheng CY (2018) Imaging of the lamina cribrosa and its role in glaucoma: a review. Clin Exp Ophthalmol 46(2):177–188. https://doi.org/10.1111/ceo.13126

    Article  PubMed  Google Scholar 

  16. Gupta N, Ang LC, Noël de Tilly L, Bidaisee L, Yücel YH (2006) Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br J Ophthalmol 90(6):674–678. https://doi.org/10.1136/bjo.2005.086769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. García-Medina JJ, Del-Rio-Vellosillo M, Palazón-Cabanes A, Tudela-Molino M, Gómez-Molina C, Guardiola-Fernández A, Villegas-Pérez MP (2018) Mapping the thickness changes on retinal layers segmented by spectral-domain optical coherence tomography using the posterior pole program in glaucoma. Mapeo de los cambios de grosor en el glaucoma de las capas retinianas maculares segmentadas usando el programa de polo posterior de la tomografía de coherencia óptica de dominio espectral. Archivos de la Sociedad Espanola de Oftalmologia 93(6):263–273. https://doi.org/10.1016/j.oftal.2018.01.010

    Article  PubMed  Google Scholar 

  18. Garcia-Medina JJ, Del-Rio-Vellosillo M, Palazon-Cabanes A, Pinazo-Duran MD, Zanon-Moreno V, Villegas-Perez MP (2020) Glaucomatous maculopathy: thickness differences on inner and outer macular layers between ocular hypertension and early primary open-angle glaucoma using 8 × 8 posterior pole algorithm of SD-OCT. J Clin Med 9(5):1503. https://doi.org/10.3390/jcm9051503

    Article  PubMed Central  Google Scholar 

  19. Vianna JR, Butty Z, Torres LA, Sharpe GP, Hutchison DM, Shuba LM, Nicolela MT, Chauhan BC (2019) Outer retinal layer thickness in patients with glaucoma with horizontal hemifield visual field defects. Br J Ophthalmol 103(9):1217–1222. https://doi.org/10.1136/bjophthalmol-2018-312753

    Article  PubMed  Google Scholar 

  20. Silverstein E, Freedman S, Zéhil GP, Jiramongkolchai K, El-Dairi M (2016) The macula in pediatric glaucoma: quantifying the inner and outer layers via optical coherence tomography automatic segmentation. J AAPOS 20(4):332–336. https://doi.org/10.1016/j.jaapos.2016.05.013

    Article  PubMed  Google Scholar 

  21. Ishikawa H, Stein DM, Wollstein G, Beaton S, Fujimoto JG, Schuman JS (2005) Macular segmentation with optical coherence tomography. Invest Ophthalmol Vis Sci 46(6):2012–2017. https://doi.org/10.1167/iovs.04-0335

    Article  PubMed  Google Scholar 

  22. Fan N, Huang N, Lam DS, Leung CK (2011) Measurement of photoreceptor layer in glaucoma: a spectral-domain optical coherence tomography study. J Ophthalmol 2011:264803. https://doi.org/10.1155/2011/264803

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wilsey LJ, Reynaud J, Cull G, Burgoyne CF, Fortune B (2016) Macular structure and function in nonhuman primate experimental glaucoma. Invest Ophthalmol Vis Sci 57(4):1892–1900. https://doi.org/10.1167/iovs.15-18119

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nork TM, Ver Hoeve JN, Poulsen GL, Nickells RW, Davis MD, Weber AJ, Vaegan, Sarks SH, Lemley HL, Millecchia LL (2000) Swelling and loss of photoreceptors in chronic human and experimental glaucomas. Arch Ophthalmol (Chicago, Ill. : 1960) 118(2):235–245. https://doi.org/10.1001/archopht.118.2.235

    Article  CAS  PubMed  Google Scholar 

  25. Kim EK, Park HL, Park CK (2017) Relationship between retinal inner nuclear layer thickness and severity of visual field loss in glaucoma. Sci Rep 7(1):5543. https://doi.org/10.1038/s41598-017-05282-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hasegawa T, Akagi T, Yoshikawa M, Suda K, Yamada H, Kimura Y, Nakanishi H, Miyake M, Unoki N, Ikeda HO, Yoshimura N (2015) Microcystic inner nuclear layer changes and retinal nerve fiber layer defects in eyes with glaucoma. PLoS One 10(6):e0130175. https://doi.org/10.1371/journal.pone.0130175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lei Y, Garrahan N, Hermann B, Becker DL, Hernandez MR, Boulton ME, Morgan JE (2008) Quantification of retinal transneuronal degeneration in human glaucoma: a novel multiphoton-DAPI approach. Invest Ophthalmol Vis Sci 49(5):1940–1945. https://doi.org/10.1167/iovs.07-0735

    Article  PubMed  Google Scholar 

  28. Choi SS, Zawadzki RJ, Lim MC, Brandt JD, Keltner JL, Doble N, Werner JS (2011) Evidence of outer retinal changes in glaucoma patients as revealed by ultrahigh-resolution in vivo retinal imaging. Br J Ophthalmol 95(1):131–141. https://doi.org/10.1136/bjo.2010.183756

    Article  PubMed  Google Scholar 

  29. Werner JS, Keltner JL, Zawadzki RJ, Choi SS (2011) Outer retinal abnormalities associated with inner retinal pathology in nonglaucomatous and glaucomatous optic neuropathies. Eye (London, England) 25(3):279–289. https://doi.org/10.1038/eye.2010.218

    Article  CAS  Google Scholar 

  30. Vajaranant TS, Anderson RJ, Zelkha R, Zhang C, Wilensky JT, Edward DP, Shahidi M (2011) The relationship between macular cell layer thickness and visual function in different stages of glaucoma. Eye (Lond) 25(5):612–618. https://doi.org/10.1038/eye.2011.17

    Article  CAS  Google Scholar 

  31. Na JH, Sung KR, Baek S, Kim YJ, Durbin MK, Lee HJ, Kim HK, Sohn YH (2012) Detection of glaucoma progression by assessment of segmented macular thickness data obtained using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 53(7):3817–3826. https://doi.org/10.1167/iovs.11-9369

    Article  PubMed  Google Scholar 

  32. Unterlauft JD, Rehak M, Böhm M, Rauscher FG (2018) Analyzing the impact of glaucoma on the macular architecture using spectral-domain optical coherence tomography. PLoS One 13(12):e0209610. https://doi.org/10.1371/journal.pone.0209610

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fujihara F, de Arruda Mello PA, Lindenmeyer RL, Pakter HM, Lavinsky J, Benfica CZ, Castoldi N, Picetti E, Lavinsky D, Finkelsztejn A, Lavinsky F (2020) Individual macular layer evaluation with spectral domain optical coherence tomography in normal and glaucomatous eyes. Clin Ophthalmol (Auckland NZ) 14:1591–1599. https://doi.org/10.2147/OPTH.S256755

    Article  Google Scholar 

  34. Thomas R, Muliyil J, Simha RA, Parikh RS (2006) Heidelberg retinal tomograph (HRT 2) parameters in primary open angle glaucoma and primary angle closure glaucoma: a comparative study in an Indian population. Ophthalmic Epidemiol 13(5):343–350. https://doi.org/10.1080/09286580600850983

    Article  PubMed  Google Scholar 

  35. Boland MV, Zhang L, Broman AT, Jampel HD, Quigley HA (2008) Comparison of optic nerve head topography and visual field in eyes with open-angle and angle-closure glaucoma. Ophthalmology 115(2):239–245.e2. https://doi.org/10.1016/j.ophtha.2007.03.086

    Article  PubMed  Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

Zakieh Vahedian and Ghasem Fakhraie designed the study. Seyed Mehdi Tabatabaei and Mehrnoosh Ghasemi were active in data registration. Ali Azimi was the coordinator.

Corresponding author

Correspondence to Seyed Mehdi Tabatabaei.

Ethics declarations

Ethics approval

All procedures performed in this study that involves human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Also, the institutional review board of the Tehran University of Medical Sciences approved the study.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

There is no identifying information about participants available in the article, so this issue is not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahedian, Z., Fakhraie, G., Ghasemi, M. et al. The thickness of the outer retina in the macula and circumpapillary area in patients with unilateral advanced glaucoma. Graefes Arch Clin Exp Ophthalmol 260, 3935–3944 (2022). https://doi.org/10.1007/s00417-022-05756-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-022-05756-w

Keywords

Navigation