Skip to main content

Advertisement

Log in

Comparison of subjective cyclofusion ranges and objective ocular torsion in normal participants according to age

  • Neurophthalmology
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the relationship between subjective cyclofusion ranges and objective ocular torsion in normal participants according to age.

Methods

This cross-sectional study included 120 participants aged ≥ 20 years with no ocular diseases. The subjective cyclofusion ranges were measured centrifugally and centripetally in the direction of excyclotorsion and incyclotorsion, respectively, concurrently with rotational diplopia production by rotation using synoptophore. Disc fovea angle (DFA) was defined as the angle formed by two lines: a line passing through the center of the optic nerve papilla and fovea and a horizontal line passing through the center of gravity of the optic papilla using fundus photographs.

Results

The participants were aged 49.1 ± 17.7 years. The total cyclofusion centrifugal (sum of extorsion and intorsion) and centripetal ranges were 10.9 ± 2.2° and 7.2 ± 1.8°, respectively, both of which decreased in participants in their 60 s and 70 s (p < 0.01). The DFA was − 7.0 ± 3.4° in the right eye (− : excyclo, + : incyclo) and − 8.0 ± 3.2° in the left, which was associated with age (p < 0.001). The correlation between the DFA and centrifugal (r =  − 0.13, p = 0.16) and centripetal (r =  − 0.002, p = 0.99) cyclofusion ranges of extorsion was not significantly different. The centrifugal (r = 0.37, p < 0.001) and centripetal (r = 0.40, p < 0.001) cyclofusion ranges of intorsion were positively correlated.

Conclusion

Subjective cyclofusion ranges decreased in both extorsion and intorsion in the elderly. Objective ocular torsion showed excyclotorsion with age. When strabismus surgery is performed in elderly patients with torsional strabismus, the decrease in subjective cyclofusion ranges should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

References

  1. Guyton DL (2008) Ocular torsion reveals the mechanisms of cyclovertical strabismus The Weisenfeld Lecture. Invest Ophthalmol Vis Sci 49(3):847. https://doi.org/10.1167/iovs.07-0739

    Article  PubMed  Google Scholar 

  2. von Noorden GK, Murray E, Wong SY (1986) Superior oblique paralysis. Arch Ophthalmol 104(12):1771. https://doi.org/10.1001/archopht.1986.01050240045037

    Article  Google Scholar 

  3. Kraft SP, O’Reilly C, Quigley PL, Allan K, Eustis HS (1993) Cyclotorsion in unilateral and bilateral superior oblique paresis. J Pediatr Ophthalmol Strabismus 30(6):361–367. https://doi.org/10.3928/0191-3913-19931101-05

    Article  CAS  PubMed  Google Scholar 

  4. Kushner BJ (1985) The role of ocular torsion on the etiology of A and V patterns. J Pediatr Ophthalmol Strabismus 22(5):171–179. https://doi.org/10.3928/0191-3913-19850901-04

    Article  CAS  PubMed  Google Scholar 

  5. Deng H, Irsch K, Gutmark R, Phamonvaechavan P, Foo FY, Anwar DS, Guyton D (2013) Fusion can mask the relationships between fundus torsion, oblique muscle overaction/underaction, and A- and V-pattern strabismus. J AAPOS 17(2):177–183. https://doi.org/10.1016/j.jaapos.2012.10.023

    Article  PubMed  Google Scholar 

  6. Shin KH, Lee HJ, Lim HT (2013) Ocular torsion among patients with intermittent exotropia: relationships with disease severity factors. Am J Ophthalmol 155(1):177–182. https://doi.org/10.1016/j.ajo.2012.07.011

    Article  PubMed  Google Scholar 

  7. Rutar T, Demer JL (2009) “Heavy Eye” syndrome in the absence of high myopia: a connective tissue degeneration in elderly strabismic patients. J AAPOS 13(1):36–44. https://doi.org/10.1016/j.jaapos.2008.07.008

    Article  PubMed  Google Scholar 

  8. Chaudhuri Z, Demer JL (2013) Sagging eye syndrome. JAMA Ophthalmol 131(5):619. https://doi.org/10.1001/jamaophthalmol.2013.783

    Article  PubMed  PubMed Central  Google Scholar 

  9. Goseki T (2021) Sagging eye syndrome. Jpn J Ophthalmol 65(4):448–453. https://doi.org/10.1007/s10384-021-00839-3

    Article  PubMed  Google Scholar 

  10. Kawai M, Goseki T, Ishikawa H, Hoshina M, Shoji N (2018) Causes, background, and characteristics of binocular diplopia in the elderly. Jpn J Ophthalmol 62(6):659–666. https://doi.org/10.1007/s10384-018-0617-2

    Article  CAS  PubMed  Google Scholar 

  11. Goseki T, Suh SY, Robbins L, Pineles SL, Velez FG, Demer JL (2020) Prevalence of sagging eye syndrome in adults with binocular diplopia. Am J Ophthalmol 209:55–61. https://doi.org/10.1016/j.ajo.2019.09.006

    Article  PubMed  Google Scholar 

  12. Harada M (1964) Surgical correction of cyclotropia. Jpn J Ophthalmol 8:88–96

    Google Scholar 

  13. Von Noorden GK (1969) Strabismus. Arch Ophthalmol (Chicago, Ill.: 1960) 82(3):393–414. https://doi.org/10.1001/archopht.1969.00990020395019

  14. Helveston EM, Mora JS, Lipsky SN, Plager DA, Sprunger DT et al (1996) Surgical treatment of superior oblique palsy. Trans Am Ophthalmol Soc 123(3):436–437. https://doi.org/10.1016/s0002-9394(14)70166-7

    Article  Google Scholar 

  15. von Noorden G, Jenkins RH, Chu MW (1996) horizontal transposition of the vertical rectus muscles for cyclotropia. Am J Ophthalmol 122(3):325–330. https://doi.org/10.1016/s0002-9394(14)72058-6

    Article  Google Scholar 

  16. Flodin S, Pansell T, Rydberg A, Andersson Grönlund M (2019) Clinical measurements of normative subjective cyclotorsion and cyclofusion in a healthy adult population. Acta Ophthalmol 98(2):177–181. https://doi.org/10.1111/aos.14201

    Article  PubMed  Google Scholar 

  17. Arici C, Oguz V (2012) The effect of surgical treatment of superior oblique muscle palsy on ocular torsion. J AAPOS 16(1):21–25. https://doi.org/10.1016/j.jaapos.2011.09.015

    Article  PubMed  Google Scholar 

  18. Khanna RK, Pasco J, Santallier M, Pisella PJ, Arsene S (2018) Objective ocular torsion outcomes after unilateral horizontal rectus surgery in infantile esotropia. Graefes Arch Clin Exp Ophthalmol 256(9):1783–1788. https://doi.org/10.1007/s00417-018-4027-4

    Article  PubMed  Google Scholar 

  19. Bixenman WW, Von Noorden GK (1982) Apparent foveal displacement in normal subjects and in cyclotropia. Ophthalmology 89(1):58–62. https://doi.org/10.1016/s0161-6420(82)34862-9

    Article  CAS  PubMed  Google Scholar 

  20. Rohrschneider K (2004) Determination of the location of the fovea on the fundus. Invest Ophthalmol Vis Sci 45(9):3257. https://doi.org/10.1167/iovs.03-1157

    Article  PubMed  Google Scholar 

  21. Jonas RA, Wang YX, Yang H, Li JJ, Xu L, Panda-Jonas S, Jonas J (2015) Optic disc - fovea angle: the Beijing Eye Study 2011. PLoS ONE 10(11):e0141771. https://doi.org/10.1371/journal.pone.0141771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miyata M, Yoshikawa M, Ohtsuki H, Muraoka Y, Hata M, Yokota S et al (2018) Age‐related change and sex difference over 60s in disc‐fovea angle in Japanese population: the Nagahama Study. Acta Ophthalmol 96(7). https://doi.org/10.1111/aos.13642

  23. Sen DK, Singh B, Mathur GP (1980) Torsional fusional vergences and assessment of cyclodeviation by synoptophore method. Br J Ophthalmol 64(5):354–357. https://doi.org/10.1136/bjo.64.5.354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sharma P, Prasad K, Khokhar S (1999) Cyclofusion in normal and superior oblique palsy subjects. J Pediatr Ophthalmol Strabismus 36(5):264–270. https://doi.org/10.3928/0191-3913-19990901-07

    Article  CAS  PubMed  Google Scholar 

  25. Palomo Álvarez C, Puell MC, Sánchez-Ramos C, Villena C (2005) Normal values of distance heterophoria and fusional vergence ranges and effects of age. Graefes Arch Clin Exp Ophthalmol 244(7):821–824. https://doi.org/10.1007/s00417-005-0166-5

    Article  PubMed  Google Scholar 

  26. McKelvie P, Friling R, Davey K, Kowal L (1999) Changes as the result of ageing in extraocular muscles: a post-mortem study. Aust N Z J Ophthalmol 27(6):420–425. https://doi.org/10.1046/j.1440-1606.1999.00244.x

    Article  CAS  PubMed  Google Scholar 

  27. Lefèvre F, Leroy K, Delrieu B, Lassale D, Péchereau A (2007) Étude des rapports papille-fovéa par rétinophotographie chez le patient sain. J Fr Ophtalmol 30(6):598–606. https://doi.org/10.1016/s0181-5512(07)89664-1

    Article  PubMed  Google Scholar 

  28. Jethani J, Seethapathy G, Purohit J, Shah D (2010) Measuring normal ocular torsion and its variation by fundus photography in children between 5–15 years of age. Indian J Ophthalmol 58(5):417. https://doi.org/10.4103/0301-4738.67060

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pekel G, Acer S, Özbakis F, Yagci R, Sayin N (2014) Macular asymmetry analysis in sighting ocular dominance. Kaohsiung J Med Sci 30(10):531–536. https://doi.org/10.1016/j.kjms.2014.08.003

    Article  PubMed  Google Scholar 

  30. Demer JL, Kono R, Wright W (2003) Magnetic resonance imaging of human extraocular muscles in convergence. J Neurophysiol 89(4):2072–2085. https://doi.org/10.1152/jn.00636.2002

    Article  PubMed  Google Scholar 

  31. Kawai M, Goseki T, Ishikawa H, Tatsui S, Shoji N (2020) Standard coronal orbital magnetic resonance imaging is an effective technique for diagnosing sagging eye syndrome. Graefes Arch Clin Exp Ophthalmol 258(9):1983–1989. https://doi.org/10.1007/s00417-020-04718-4

    Article  PubMed  Google Scholar 

  32. Guyton DL (1988) Ocular torsion: sensorimotor principles. Graefes Arch Clin Exp Ophthalmol 226(3):241–245. https://doi.org/10.1007/BF02181189

    Article  CAS  PubMed  Google Scholar 

  33. Kertesz AE, Sullivan MJ (1978) The effect of stimulus size on human cyclofusional response. Vision Res 18(5):567–571. https://doi.org/10.1016/0042-6989(78)90204-3

    Article  CAS  PubMed  Google Scholar 

  34. Lança CC, Rowe FJ (2019) Measurement of fusional vergence: a systematic review. Strabismus 27(2):88–113. https://doi.org/10.1080/09273972.2019.1583675

    Article  PubMed  Google Scholar 

  35. Georgievski Z, Sleep M, Koklanis K (2007) Simulated torsional disparity disrupts horizontal fusion and stereopsis. J AAPOS 11(2):120–124. https://doi.org/10.1016/j.jaapos.2006.09.022

    Article  PubMed  Google Scholar 

  36. Miyata M, Hasebe S, Ohtsuki H, Sato M (2005) Assessment of cyclodisparity-induced slant perception with a synoptophore. Jpn J Ophthalmol 49(2):137–142. https://doi.org/10.1007/s10384-004-0158-8

    Article  PubMed  Google Scholar 

  37. Chaudhuri Z, Demer JL (2018) Long-term surgical outcomes in the sagging eye syndrome. Strabismus 26(1):6–10. https://doi.org/10.1080/09273972.2017.1421676

    Article  PubMed  PubMed Central  Google Scholar 

  38. Van Rijn LJ, Van Der Steen J, Collewijn H (1994) Instability of ocular torsion during fixation: cyclovergence is more stable than cycloversion. Vision Res 34(8):1077–1087. https://doi.org/10.1016/0042-6989(94)90011-6

    Article  PubMed  Google Scholar 

  39. Taylor MJ, Roberts DC, Zee DS (2000) Effect of sustained cyclovergence on eye alignment: rapid torsional phoria adaptation. Invest Ophthalmol Vis Sci 41(5):1076–1083

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Manami Kawai. The first draft of the manuscript was written by Manami Kawai, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Toshiaki Goseki.

Ethics declarations

Ethics approval

This research received approval from the ethics review board of Kitasato University School of Medical and Health Sciences (2021–010).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

Patients signed informed consent regarding publishing their data.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawai, M., Goseki, T., Okano, T. et al. Comparison of subjective cyclofusion ranges and objective ocular torsion in normal participants according to age. Graefes Arch Clin Exp Ophthalmol 260, 3675–3681 (2022). https://doi.org/10.1007/s00417-022-05734-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-022-05734-2

Keywords

Navigation