Skip to main content

Advertisement

Log in

Intraocular lens power calculation in patients with irregular astigmatism

  • Cataract
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Accurate intraocular lens (IOL) calculation in subjects with irregular astigmatism is challenging. This study evaluated the accuracy of using Scheimpflug-derived central 2-mm equivalent keratometry reading (EKR) values for IOL calculation in irregular astigmatism.

Methods

This retrospective study included subjects (31 eyes of 30 patients) who underwent cataract surgery and IOL calculation using the 2-mm central EKR methods. We compared prediction error (PE) and absolute PE (APE) outcomes using SRK/T and Barrett Universal II formulas for keratometry data obtained from the IOLMaster 500 and Pentacam (anterior corneal sim k) devices.

Results

Cataract surgery and IOL calculation using the 2-mm central EKR methods resulted in improved visual acuity (uncorrected: from 1.13 ± 0.38 to 0.65 ± 0.46 logMar, p < 0.01; best-corrected: from 0.45 ± 0.24 to 0.26 ± 0.20 logMar, p < 0.01) after surgery. The percentage of subjects with best-corrected visual acuity of 6/6 was 22%, < 6/9 was 58%, and < 6/12 was 71%. For both the SRK/T and the Barrett formulas, the PE was similar to those obtained by IOLMaster (> 0.14) but lower than those obtained by the anterior corneal sim k (p < 0.02). IOLMaster provided keratometry reading in only 23/31 (74.1%) of cases.

Conclusions

The use of Scheimpflug central 2-mm EKR for IOL calculation in irregular astigmatism was beneficial in terms of visual acuity improvement. It had comparable refractive prediction performance to the IOLMaster 500 and better than the anterior corneal sim K. The 2-mm EKR method can be used when IOLMaster cannot provide a reliable reading in abnormal corneas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Watson MP, Anand S, Bhogal M et al (2014) Cataract surgery outcome in eyes with keratoconus. Br J Ophthalmol 98:361–364. https://doi.org/10.1136/bjophthalmol-2013-303829

    Article  PubMed  Google Scholar 

  2. Thebpatiphat N, Hammersmith KM, Rapuano CJ et al (2007) Cataract surgery in keratoconus. Eye Contact Lens 33:244–246. https://doi.org/10.1097/ICL.0b013e318030c96d

    Article  PubMed  Google Scholar 

  3. Hua Y, Zhang X, Utheim TP et al (2016) Evaluation of equivalent keratometry readings obtained by Pentacam HR (high resolution). PLoS One 11:e0150121. https://doi.org/10.1371/journal.pone.0150121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saglik A, Celik H (2019) Comparison of Holladay equivalent keratometry readings and anterior corneal surface keratometry measurements in keratoconus. Int Ophthalmol 39:1501–1509. https://doi.org/10.1007/s10792-018-0967-2

    Article  PubMed  Google Scholar 

  5. Symes RJ, Say MJ, Ursell PG (2010) Scheimpflug keratometry versus conventional automated keratometry in routine cataract surgery. J Cataract Refract Surg 36:1107–1114. https://doi.org/10.1016/j.jcrs.2009.11.026

    Article  PubMed  Google Scholar 

  6. Tang Q, Hoffer KJ, Olson MD, Miller KM (2009) Accuracy of Scheimpflug Holladay equivalent keratometry readings after corneal refractive surgery. J Cataract Refract Surg 35:1198–1203. https://doi.org/10.1016/j.jcrs.2009.02.030

    Article  PubMed  Google Scholar 

  7. Cano-Ortiz A, Morales P, Sánchez-Ventosa Á et al (2021) Aberrometric, keratometric, and visual outcomes after trans-epithelial topography-guided phototherapeutic keratectomy for the treatment of irregular corneas. Clin Ophthalmol 15:3777–3786. https://doi.org/10.2147/OPTH.S324386

    Article  PubMed  PubMed Central  Google Scholar 

  8. Roh HC, Chuck RS, Lee JK, Park CY (2015) The effect of corneal irregularity on astigmatism measurement by automated versus ray tracing keratometry. Medicine (Baltimore) 94:e677. https://doi.org/10.1097/MD.0000000000000677

    Article  Google Scholar 

  9. Goggin M, Alpins N, Schmid LM (2000) Management of irregular astigmatism. Curr Opin Ophthalmol 11:260–266. https://doi.org/10.1097/00055735-200008000-00007

    Article  CAS  PubMed  Google Scholar 

  10. Hunt SV, Caesar R (2020) The highs and lows of Medisoft as an audit tool: lessons from a 5-year upper eyelid ptosis audit. Eye (Lond). https://doi.org/10.1038/s41433-020-1113-8

    Article  Google Scholar 

  11. Shajari M, Kolb CM, Petermann K et al (2018) Comparison of 9 modern intraocular lens power calculation formulas for a quadrifocal intraocular lens. J Cataract Refract Surg 44:942–948. https://doi.org/10.1016/j.jcrs.2018.05.021

    Article  PubMed  Google Scholar 

  12. Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163. https://doi.org/10.1016/j.jcm.2016.02.012

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hoffer KJ, Savini G (2020) Update on intraocular lens power calculation study protocols. Ophthalmology. https://doi.org/10.1016/j.ophtha.2020.07.005

    Article  PubMed  Google Scholar 

  14. Wang L, Koch DD, Hill W, Abulafia A (2017) Pursuing perfection in intraocular lens calculations: III. Criteria for analyzing outcomes. J Cataract Refract Surg 43:999–1002. https://doi.org/10.1016/j.jcrs.2017.08.003

    Article  PubMed  Google Scholar 

  15. Martinez-Enriquez E, Pérez-Merino P, Durán-Poveda S et al (2018) Estimation of intraocular lens position from full crystalline lens geometry: towards a new generation of intraocular lens power calculation formulas. Sci Rep 8:9829. https://doi.org/10.1038/s41598-018-28272-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ghiasian L, Abolfathzadeh N, Manafi N, Hadavandkhani A (2019) Intraocular lens power calculation in keratoconus; a review of literature. J Curr Ophthalmol 31:127–134. https://doi.org/10.1016/j.joco.2019.01.011

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fam HB, Lim KL (2009) Improving refractive outcomes at extreme axial lengths with the IOLMaster: the optical axial length and keratometric transformation. Br J Ophthalmol 93:678–683. https://doi.org/10.1136/bjo.2008.148452

    Article  CAS  PubMed  Google Scholar 

  18. Koch DD (2016) The enigmatic cornea and intraocular lens calculations: the LXXIII Edward Jackson Memorial Lecture. Am J Ophthalmol 171:xv–xxx. https://doi.org/10.1016/j.ajo.2016.08.020

    Article  PubMed  Google Scholar 

  19. Olsen T (2007) Calculation of intraocular lens power: a review. Acta Ophthalmol Scand 85:472–485. https://doi.org/10.1111/j.1600-0420.2007.00879.x

    Article  PubMed  Google Scholar 

  20. Omoto MK, Torii H, Masui S et al (2019) Ocular biometry and refractive outcomes using two swept-source optical coherence tomography-based biometers with segmental or equivalent refractive indices. Sci Rep 9:6557. https://doi.org/10.1038/s41598-019-42968-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Park DY, Lim DH, Chung T-Y, Chung E-S (2013) Intraocular lens power calculations in a patient with posterior keratoconus. Cornea 32:708–711. https://doi.org/10.1097/ICO.0b013e3182797900

    Article  PubMed  Google Scholar 

  22. Canovas C, Abenza S, Alcon E et al (2012) Effect of corneal aberrations on intraocular lens power calculations. J Cataract Refract Surg 38:1325–1332. https://doi.org/10.1016/j.jcrs.2012.03.033

    Article  PubMed  Google Scholar 

  23. Karunaratne N (2013) Comparison of the Pentacam equivalent keratometry reading and IOL Master keratometry measurement in intraocular lens power calculations. Clin Exp Ophthalmol 41:825–834. https://doi.org/10.1111/ceo.12124

    Article  PubMed  Google Scholar 

  24. Cua IY, Qazi MA, Lee SF, Pepose JS (2003) Intraocular lens calculations in patients with corneal scarring and irregular astigmatism. J Cataract Refract Surg 29:1352–1357. https://doi.org/10.1016/s0886-3350(03)00227-x

    Article  PubMed  Google Scholar 

  25. Tamaoki A, Kojima T, Hasegawa A et al (2015) Intraocular lens power calculation in cases with posterior keratoconus. J Cataract Refract Surg 41:2190–2195. https://doi.org/10.1016/j.jcrs.2015.11.001

    Article  PubMed  Google Scholar 

  26. Kurbanyan K, Colby K (2010) Cataract and refractive surgery in herpetic eye disease. Int Ophthalmol Clin 50:13–24. https://doi.org/10.1097/IIO.0b013e3181c5533a

    Article  PubMed  Google Scholar 

  27. Shammas HJ, Hoffer KJ, Shammas MC (2009) Scheimpflug photography keratometry readings for routine intraocular lens power calculation. J Cataract Refract Surg 35:330–334. https://doi.org/10.1016/j.jcrs.2008.10.041

    Article  PubMed  Google Scholar 

  28. Spadea L, Salvatore S, Verboschi F, Vingolo EM (2015) Corneal collagen cross-linking followed by phacoemulsification with IOL implantation for progressive keratoconus associated with high myopia and cataract. Int Ophthalmol 35:727–731. https://doi.org/10.1007/s10792-015-0107-1

    Article  PubMed  Google Scholar 

  29. Savini G, Abbate R, Hoffer KJ et al (2019) Intraocular lens power calculation in eyes with keratoconus. J Cataract Refract Surg 45:576–581. https://doi.org/10.1016/j.jcrs.2018.11.029

    Article  PubMed  Google Scholar 

  30. Smith RG, Knezevic A, Garg S (2020) Intraocular lens calculations in patients with keratoectatic disorders. Curr Opin Ophthalmol 31:284–287. https://doi.org/10.1097/ICU.0000000000000671

    Article  PubMed  Google Scholar 

  31. Kane JX, Connell B, Yip H et al (2020) Accuracy of intraocular lens power formulas modified for patients with keratoconus. Ophthalmology 127:1037–1042. https://doi.org/10.1016/j.ophtha.2020.02.008

    Article  PubMed  Google Scholar 

  32. Satou T, Shimizu K, Tsunehiro S et al (2020) Development of a new intraocular lens power calculation method based on lens position estimated with optical coherence tomography. Sci Rep 10:6501. https://doi.org/10.1038/s41598-020-63546-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alió JL, Belda JI, Artola A et al (2002) Contact lens fitting to correct irregular astigmatism after corneal refractive surgery. J Cataract Refract Surg 28:1750–1757. https://doi.org/10.1016/s0886-3350(02)01489-x

    Article  PubMed  Google Scholar 

  34. Akman A, Asena L, Güngör SG (2016) Evaluation and comparison of the new swept source OCT-based IOLMaster 700 with the IOLMaster 500. Br J Ophthalmol 100:1201–1205. https://doi.org/10.1136/bjophthalmol-2015-307779

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Marguerite Stolz research grant, Tel-Aviv University, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asaf Achiron.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. Data collection for this retrospective study was approved by the Bristol Eye Hospital, Bristol, UK.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achiron, A., Elhaddad, O., Leadbetter, D. et al. Intraocular lens power calculation in patients with irregular astigmatism. Graefes Arch Clin Exp Ophthalmol 260, 3889–3895 (2022). https://doi.org/10.1007/s00417-022-05729-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-022-05729-z

Keywords

Navigation