Skip to main content

Advertisement

Log in

Role of the JAK/STAT pathway in a streptozotocin-induced diabetic retinopathy mouse model

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The Janus tyrosine kinase and signal transducers and activators of transcription (JAK/STAT) pathway is involved in vascular endothelial growth factor (VEGF) expression, but the role of this pathway in diabetic retinopathy (DR) remains unclear. We investigated the role of the JAK/STAT pathway on DR and VEGF expression using a streptozotocin (STZ)-induced DR mouse model.

Methods

Cultured ARPE-19 cells were exposed to high-glucose conditions and treated with JAK/STAT inhibitors (JAK inhibitor I [JAKiI], tofacitinib, STAT3 inhibitor [STAT3i]) for 48 h. Reverse-transcription polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay were used to investigate p-JAK/STAT and VEGF expression. Diabetes was induced by intraperitoneal injection of STZ (50 mg/kg) in C57BL/6 mice for 5 days. DR development was evaluated every 4 weeks. JAK/STAT inhibitors were administered for 8 weeks. Immunofluorescence was used to measure the activation status of the JAK/STAT pathway and VEGF production in the retinal tissue.

Results

In ARPE-19 cells exposed to high-glucose conditions, the mRNA and secretory protein levels of VEGF, p-JAK1, p-JAK2, p-STAT3, and p-STAT5 levels were significantly increased. Treatment with JAKiI, tofacitinib, and STAT3i significantly suppressed VEGF to basal levels at both the mRNA and secretory levels in vitro. In STZ-induced mice, retinal vascular leakage, p-JAK1, p-JAK2, p-JAK3, p-STAT3, and VEGF were significantly increased after diabetes induction. Diabetes-induced retinal vascular leakage was significantly reduced by treatment with JAKiI and tofacitinib. Increased p-JAK1 and VEGF in STZ-induced mice were significantly reduced by JAKiI (p < 0.05, p < 0.001) and tofacitinib (p < 0.001, respectively).

Conclusion

JAK1 may be more involved in VEGF production and DR progression in mice than JAK2, JAK3, and STAT3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Yes.

Code availability

Not applicable.

Abbreviations

DR:

Diabetic retinopathy

JAK:

Janus tyrosine kinase

PCR:

Polymerase chain reaction

RPE:

Retinal pigment epithelium

STAT:

Signal transducers and activators of transcription

STZ:

Streptozotocin

VEGF:

Vascular endothelial growth factor

References

  1. Das A, McGuire PG, Rangasamy S (2015) Diabetic macular edema: pathophysiology and novel therapeutic targets. Ophthalmology 122:1375–1394. https://doi.org/10.1016/j.ophtha.2015.03.024

    Article  PubMed  Google Scholar 

  2. Nentwich MM, Ulbig MW (2015) Diabetic retinopathy – ocular complications of diabetes mellitus. World J Diabetes 6:489–499. https://doi.org/10.4239/wjd.v6.i3.489

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kern TS (2007) Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Exp Diabetes Res 2007:95103. https://doi.org/10.1155/2007/95103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Safi SZ, Qvist R, Kumar S, Batumalaie K, Ismail IS (2014) Molecular mechanisms of diabetic retinopathy, general preventive strategies, and novel therapeutic targets. Biomed Res Int 2014:801269. https://doi.org/10.1155/2014/801269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Semeraro F, Cancarini A, dell’Omo R, Rezzola S, Romano MR, Costagliola C (2015) Diabetic retinopathy: vascular and inflammatory disease. J Diabetes Res 2015:582060. https://doi.org/10.1155/2015/582060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eshaq RS, Aldalati AMZ, Alexander JS, Harris NR (2017) Diabetic retinopathy: breaking the barrier. Pathophysiology 24:229–241. https://doi.org/10.1016/j.pathophys.2017.07.001

    Article  PubMed  Google Scholar 

  7. Penn JS, Madan A, Caldwell RB, Bartoli M, Caldwell RW, Hartnett ME (2008) Vascular endothelial growth factor in eye disease. Prog Retin Eye Res 27:331–371. https://doi.org/10.1016/j.preteyeres.2008.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Urias EA, Urias GA, Monickaraj F, McGuire P, Das A (2017) Novel therapeutic targets in diabetic macular edema: Beyond VEGF. Vision Res 139:221–227. https://doi.org/10.1016/j.visres.2017.06.015

    Article  PubMed  Google Scholar 

  9. Wang H, Byfield G, Jiang Y, Smith GW, McCloskey M, Hartnett ME (2012) VEGF-mediated STAT3 activation inhibits retinal vascularization by down-regulating local erythropoietin expression. Am J Pathol 180:1243–1253. https://doi.org/10.1016/j.ajpath.2011.11.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brosius FC 3rd, He JC (2015) JAK inhibition and progressive kidney disease. Curr Opin Nephrol Hypertens 24:88–95. https://doi.org/10.1097/MNH.0000000000000079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stephanou A (2009) JAK-STAT Pathway in Disease. CRC press, Taylor & Francis Group, 1st ed: Chapter 1

  12. Coates LC, FitzGerald O, Helliwell PS, Paul C (2016) Psoriasis, psoriatic arthritis, and rheumatoid arthritis: is all inflammation the same? Semin Arthritis Rheum 46:291–304. https://doi.org/10.1016/j.semarthrit.2016.05.012

    Article  CAS  PubMed  Google Scholar 

  13. Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, Lees CW, Balschun T, Lee J, Roberts R, Anderson CA, Bis JC, Bumpstead S, Ellinghaus D, Festen EM, Georges M, Green T, Haritunians T, Jostins L, Latiano A, Mathew CG, Montgomery GW, Prescott NJ, Raychaudhuri S, Rotter JI, Schumm P, Sharma Y, Simms LA, Taylor KD, Whiteman D, Wijmenga C, Baldassano RN, Barclay M, Bayless TM, Brand S, Buning C, Cohen A, Colombel JF, Cottone M, Stronati L, Denson T, De Vos M, D’Inca R, Dubinsky M, Edwards C, Florin T, Franchimont D, Gearry R, Glas J, Van Gossum A, Guthery SL, Halfvarson J, Verspaget HW, Hugot JP, Karban A, Laukens D, Lawrance I, Lemann M, Levine A, Libioulle C, Louis E, Mowat C, Newman W, Panes J, Phillips A, Proctor DD, Regueiro M, Russell R, Rutgeerts P, Sanderson J, Sans M, Seibold F, Steinhart AH, Stokkers PC, Torkvist L, Kullak-Ublick G, Wilson D, Walters T, Targan SR, Brant SR, Rioux JD, D’Amato M, Weersma RK, Kugathasan S, Griffiths AM, Mansfield JC, Vermeire S, Duerr RH, Silverberg MS, Satsangi J, Schreiber S, Cho JH, Annese V, Hakonarson H, Daly MJ, Parkes M (2010) Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet 42:1118–1125. https://doi.org/10.1038/ng.717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Malemud CJ (2018) The role of the JAK/STAT signal pathway in rheumatoid arthritis. Ther Adv Musculoskelet Dis 10:117–127. https://doi.org/10.1177/1759720X18776224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Remmers EF, Plenge RM, Lee AT, Graham RR, Hom G, Behrens TW, de Bakker PI, Le JM, Lee HS, Batliwalla F, Li W, Masters SL, Booty MG, Carulli JP, Padyukov L, Alfredsson L, Klareskog L, Chen WV, Amos CI, Criswell LA, Seldin MF, Kastner DL, Gregersen PK (2007) STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med 357:977–986. https://doi.org/10.1056/NEJMoa073003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sigurdsson S, Nordmark G, Goring HH, Lindroos K, Wiman AC, Sturfelt G, Jonsen A, Rantapaa-Dahlqvist S, Moller B, Kere J, Koskenmies S, Widen E, Eloranta ML, Julkunen H, Kristjansdottir H, Steinsson K, Alm G, Ronnblom L, Syvanen AC (2005) Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet 76:528–537. https://doi.org/10.1086/428480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bousoik E, Montazeri Aliabadi H (2018) “Do we know Jack” about JAK? A closer look at JAK/STAT signaling pathway. Front Oncol 8:287. https://doi.org/10.3389/fonc.2018.00287

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xue C, Xie J, Zhao D, Lin S, Zhou T, Shi S, Shao X, Lin Y, Zhu B, Cai X (2017) The JAK/STAT3 signalling pathway regulated angiogenesis in an endothelial cell/adipose-derived stromal cell co-culture, 3D gel model. Cell Prolif 50. https://doi.org/10.1111/cpr.12307

  19. Byfield G, Budd S, Hartnett ME (2009) The role of supplemental oxygen and JAK/STAT signaling in intravitreous neovascularization in a ROP rat model. Invest Ophthalmol Vis Sci 50:3360–3365. https://doi.org/10.1167/iovs.08-3256

    Article  PubMed  Google Scholar 

  20. Zheng Z, Chen H, Zhao H, Liu K, Luo D, Chen Y, Chen Y, Yang X, Gu Q, Xu X (2010) Inhibition of JAK2/STAT3-mediated VEGF upregulation under high glucose conditions by PEDF through a mitochondrial ROS pathway in vitro. Invest Ophthalmol Vis Sci 51:64–71. https://doi.org/10.1167/iovs.09-3511

    Article  PubMed  Google Scholar 

  21. Vanlandingham PA, Nuno DJ, Quiambao AB, Phelps E, Wassel RA, Ma JX, Farjo KM, Farjo RA (2017) Inhibition of Stat3 by a small molecule inhibitor slows vision loss in a rat model of diabetic retinopathy. Invest Ophthalmol Vis Sci 58:2095–2105. https://doi.org/10.1167/iovs.16-20641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu Y, Xiao J, Zhao Y, Zhao C, Yang Q, Du X, Wang X (2020) microRNA-216a protects against human retinal microvascular endothelial cell injury in diabetic retinopathy by suppressing the NOS2/JAK/STAT axis. Exp Mol Pathol 115:104445. https://doi.org/10.1016/j.yexmp.2020.104445

    Article  CAS  PubMed  Google Scholar 

  23. Lee S, Kwak JH, Kim SH, Yun J, Cho JY, Kim K, Hwang D, Jung YS (2018) A comparison of metabolomic changes in type-1 diabetic C57BL/6N mice originating from different sources. Lab Anim Res 34:232–238. https://doi.org/10.5625/lar.2018.34.4.232

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kim HW, Roh KH, Kim SW, Park SJ, Lim NY, Jung H, Choi IW, Park S (2019) Type I pig collagen enhances the efficacy of PEDF 34-mer peptide in a mouse model of laser-induced choroidal neovascularization. Graefes Arch Clin Exp Ophthalmol 257:1709–1717. https://doi.org/10.1007/s00417-019-04394-z

    Article  CAS  PubMed  Google Scholar 

  25. Quan JH, Ismail H, Cha GH, Jo YJ, Gao FF, Choi IW, Chu JQ, Yuk JM, Lee YH (2020) VEGF production is regulated by the AKT/ERK1/2 signaling pathway and controls the proliferation of Toxoplasma gondii in ARPE-19 cells. Front Cell Infect Microbiol 10:184. https://doi.org/10.3389/fcimb.2020.00184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vadlapatla RK, Vadlapudi AD, Pal D, Mukherji M, Mitra AK (2014) Ritonavir inhibits HIF-1alpha-mediated VEGF expression in retinal pigment epithelial cells in vitro. Eye (Lond) 28:93–101. https://doi.org/10.1038/eye.2013.240

    Article  CAS  Google Scholar 

  27. Vogt RR, Unda R, Yeh LC, Vidro EK, Lee JC, Tsin AT (2006) Bone morphogenetic protein-4 enhances vascular endothelial growth factor secretion by human retinal pigment epithelial cells. J Cell Biochem 98:1196–1202. https://doi.org/10.1002/jcb.20831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Buyandelger U, Walker DG, Yanagisawa D, Morimura T, Tooyama I (2020) Effects of FTMT expression by retinal pigment epithelial cells on features of angiogenesis. Int J Mol Sci 21. https://doi.org/10.3390/ijms21103635

  29. Chen LJ, Ito S, Kai H, Nagamine K, Nagai N, Nishizawa M, Abe T, Kaji H (2017) Microfluidic co-cultures of retinal pigment epithelial cells and vascular endothelial cells to investigate choroidal angiogenesis. Sci Rep 7:3538. https://doi.org/10.1038/s41598-017-03788-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Park H, Lee DS, Yim MJ, Choi YH, Park S, Seo SK, Choi JS, Jang WH, Yea SS, Park WS, Lee CM, Jung WK, Choi IW (2015) 3,3′-Diindolylmethane inhibits VEGF expression through the HIF-1alpha and NF-kappaB pathways in human retinal pigment epithelial cells under chemical hypoxic conditions. Int J Mol Med 36:301–308. https://doi.org/10.3892/ijmm.2015.2202

    Article  CAS  PubMed  Google Scholar 

  31. Tsujinaka H, Itaya-Hironaka A, Yamauchi A, Sakuramoto-Tsuchida S, Ota H, Takeda M, Fujimura T, Takasawa S, Ogata N (2015) Human retinal pigment epithelial cell proliferation by the combined stimulation of hydroquinone and advanced glycation end-products via up-regulation of VEGF gene. Biochem Biophys Rep 2:123–131. https://doi.org/10.1016/j.bbrep.2015.05.005

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen X, Yang W, Deng X, Ye S, Xiao W (2020) Interleukin-6 promotes proliferative vitreoretinopathy by inducing epithelial-mesenchymal transition via the JAK1/STAT3 signaling pathway. Mol Vis 26:517–529

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Shien K, Papadimitrakopoulou VA, Ruder D, Behrens C, Shen L, Kalhor N, Song J, Lee JJ, Wang J, Tang X, Herbst RS, Toyooka S, Girard L, Minna JD, Kurie JM, Wistuba II, Izzo JG (2017) JAK1/STAT3 Activation through a proinflammatory cytokine pathway leads to resistance to molecularly targeted therapy in non-small cell lung cancer. Mol Cancer Ther 16:2234–2245. https://doi.org/10.1158/1535-7163.MCT-17-0148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sims NA (2020) The JAK1/STAT3/SOCS3 axis in bone development, physiology, and pathology. Exp Mol Med 52:1185–1197. https://doi.org/10.1038/s12276-020-0445-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xiong H, Zhang ZG, Tian XQ, Sun DF, Liang QC, Zhang YJ, Lu R, Chen YX, Fang JY (2008) Inhibition of JAK1, 2/STAT3 signaling induces apoptosis, cell cycle arrest, and reduces tumor cell invasion in colorectal cancer cells. Neoplasia 10:287–297. https://doi.org/10.1593/neo.07971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Williams NK, Bamert RS, Patel O, Wang C, Walden PM, Wilks AF, Fantino E, Rossjohn J, Lucet IS (2009) Dissecting specificity in the Janus kinases: the structures of JAK-specific inhibitors complexed to the JAK1 and JAK2 protein tyrosine kinase domains. J Mol Biol 387:219–232. https://doi.org/10.1016/j.jmb.2009.01.041

    Article  CAS  PubMed  Google Scholar 

  37. Pedranzini L, Dechow T, Berishaj M, Comenzo R, Zhou P, Azare J, Bornmann W, Bromberg J (2006) Pyridone 6, a pan-Janus-activated kinase inhibitor, induces growth inhibition of multiple myeloma cells. Cancer Res 66:9714–9721. https://doi.org/10.1158/0008-5472.CAN-05-4280

    Article  CAS  PubMed  Google Scholar 

  38. Koppikar P, Bhagwat N, Kilpivaara O, Manshouri T, Adli M, Hricik T, Liu F, Saunders LM, Mullally A, Abdel-Wahab O, Leung L, Weinstein A, Marubayashi S, Goel A, Gonen M, Estrov Z, Ebert BL, Chiosis G, Nimer SD, Bernstein BE, Verstovsek S, Levine RL (2012) Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy. Nature 489:155–159. https://doi.org/10.1038/nature11303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wong J, M Wall, Corboy GP, Taubenheim N, Gregory GP, Opat S, Shortt J (2020) Failure of tofacitinib to achieve an objective response in a DDX3X-MLLT10 T-lymphoblastic leukemia with activating JAK3 mutations. Cold Spring Harb Mol Case Stud 6. https://doi.org/10.1101/mcs.a004994

  40. Jiang K, Wright KL, Zhu P, Szego MJ, Bramall AN, Hauswirth WW, Li Q, Egan SE, McInnes RR (2014) STAT3 promotes survival of mutant photoreceptors in inherited photoreceptor degeneration models. Proc Natl Acad Sci U S A 111:E5716-5723. https://doi.org/10.1073/pnas.1411248112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang SS, Wei J, Qin H, Zhang L, Xie B, Hui P, Deisseroth A, Barnstable CJ, Fu XY (2004) STAT3-mediated signaling in the determination of rod photoreceptor cell fate in mouse retina. Invest Ophthalmol Vis Sci 45:2407–2412. https://doi.org/10.1167/iovs.04-0003

    Article  PubMed  Google Scholar 

  42. Banerjee S, Biehl A, Gadina M, Hasni S, Schwartz DM (2017) JAK-STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs 77:521–546. https://doi.org/10.1007/s40265-017-0701-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci 117:1281–1283. https://doi.org/10.1242/jcs.00963

    Article  CAS  PubMed  Google Scholar 

  44. Allen CL, Malhi NK, Whatmore JL, Bates DO, Arkill KP (2020) Non-invasive measurement of retinal permeability in a diabetic rat model. Microcirculation 27:e12623. https://doi.org/10.1111/micc.12623

    Article  CAS  PubMed  Google Scholar 

  45. Li S, Li T, Luo Y, Yu H, Sun Y, Zhou H, Liang X, Huang J, Tang S (2011) Retro-orbital injection of FITC-dextran is an effective and economical method for observing mouse retinal vessels. Mol Vis 17:3566–3573

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (No.: NRF-2017R1D1A1B03033799).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Woong Kim.

Ethics declarations

Ethics approval

All experimental procedures were approved by the Institutional Animal Care and Use Committee of Inje University (protocol no. 2017–011) and adhered to the Association for Research in Vision and Ophthalmology statement for the Use of Animals in Ophthalmic and Vision Research.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, CH., Roh, KH., Lim, NY. et al. Role of the JAK/STAT pathway in a streptozotocin-induced diabetic retinopathy mouse model. Graefes Arch Clin Exp Ophthalmol 260, 3553–3563 (2022). https://doi.org/10.1007/s00417-022-05694-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-022-05694-7

Keywords

Navigation