Skip to main content

Advertisement

Log in

Repeatability of a new swept-source optical coherence tomographer and agreement with other three optical biometers

  • Cataract
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the repeatability of Anterion and compare the agreement of ocular biometric measurements and predicted intraocular lens (IOL) powers with other three optical biometers.

Methods

Flat keratometry (Kf), steep keratometry (Ks), J0 and 45 vectors, central cornea thickness (CCT), anterior chamber depth (ACD), and axial length (AL) from the Anterion, IOLMaster 700, Lenstar LS 900, and OA-2000 were recorded. The IOL powers were calculated with the Hoffer Q, Holladay 1, SRK/T, and Haigis formulas. The repeatability was evaluated using the within-subject standard deviation (Sw), repeatability coefficient (RC), coefficient of variation (COV), and intraclass correlation coefficient (ICC). Inter-device agreement between the four biometers was assessed with the 95% limits of agreement.

Results

In total, 101 right eyes of 101 participants were enrolled. The Anterion showed good repeatability for all the included biometric parameters with all the CoV ≤ 0.30% and ICC ≥ 0.930 except for J45 with moderate repeatability (ICC was 0.849). Good agreement was found among the four devices for Kf, Ks, J0, J45, ACD, and AL. Generally, wide 95% LoA was found for the predicted IOL powers with the four IOL calculation formulas between the four devices.

Conclusions

The Anterion showed good repeatability of biometric measurements for most parameters. Good agreement among the four optical biometers was achieved for all the parameters except for CCT and the predicted IOL power. The AL values exhibited the best repeatability with Anterion and the best agreement among the biometers in our study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tideman J, Polling JR, Vingerling JR, Jaddoe V, Williams C, Guggenheim JA, Klaver C (2018) Axial length growth and the risk of developing myopia in European children. Acta Ophthalmol 96:301–309. https://doi.org/10.1111/aos.13603

    Article  PubMed  Google Scholar 

  2. Zhang Y, Chen Y (2019) Effect of orthokeratology on axial length elongation in anisomyopic children. Optom Vis Sci 96:43–47. https://doi.org/10.1097/OPX.0000000000001315

    Article  PubMed  Google Scholar 

  3. Day AC, Machin D, Aung T, Gazzard G, Husain R, Chew PT, Khaw PT, Seah SK, Foster PJ (2011) Central corneal thickness and glaucoma in East Asian people. Invest Ophthalmol Vis Sci 52:8407–8412. https://doi.org/10.1167/iovs.11-7927

    Article  PubMed  Google Scholar 

  4. Dutta D, Rao HL, Addepalli UK, Vaddavalli PK (2013) Corneal thickness in keratoconus: comparing optical, ultrasound, and optical coherence tomography pachymetry. Ophthalmology 120:457–463. https://doi.org/10.1016/j.ophtha.2012.08.036

    Article  PubMed  Google Scholar 

  5. Kumar N, Pop-Busui R, Musch DC, Reed DM, Momont AC, Hussain M, Raval N, Moroi SE, Shtein R (2018) Central corneal thickness increase due to stromal thickening with diabetic peripheral neuropathy severity. Cornea 37:1138–1142. https://doi.org/10.1097/ICO.0000000000001668

    Article  PubMed  PubMed Central  Google Scholar 

  6. Findl O, Kriechbaum K, Sacu S, Kiss B, Polak K, Nepp J, Schild G, Rainer G, Maca S, Petternel V, Lackner B, Drexler W (2003) Influence of operator experience on the performance of ultrasound biometry compared to optical biometry before cataract surgery. J Cataract Refract Surg 29:1950–1955. https://doi.org/10.1016/s0886-3350(03)00243-8

    Article  PubMed  Google Scholar 

  7. Chen YA, Hirnschall N, Findl O (2011) Evaluation of 2 new optical biometry devices and comparison with the current gold standard biometer. J Cataract Refract Surg 37:513–517. https://doi.org/10.1016/j.jcrs.2010.10.041

    Article  CAS  PubMed  Google Scholar 

  8. Cruysberg LP, Doors M, Verbakel F, Berendschot TT, De Brabander J, Nuijts RM (2010) Evaluation of the Lenstar LS 900 non-contact biometer. Br J Ophthalmol 94:106–110. https://doi.org/10.1136/bjo.2009.161729

    Article  CAS  PubMed  Google Scholar 

  9. Mandal P, Berrow EJ, Naroo SA, Wolffsohn JS, Uthoff D, Holland D, Shah S (2014) Validity and repeatability of the Aladdin ocular biometer. Br J Ophthalmol 98:256–258. https://doi.org/10.1136/bjophthalmol-2013-304002

    Article  PubMed  Google Scholar 

  10. McAlinden C, Wang Q, Pesudovs K, Yang X, Bao F, Yu A, Lin S, Feng Y, Huang J (2015) Axial length measurement failure rates with the IOLMaster and Lenstar LS 900 in eyes with cataract. PLoS ONE 10:e0128929. https://doi.org/10.1371/journal.pone.0128929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gao R, Chen H, Savini G, Miao Y, Wang X, Yang J, Zhao W, Wang Q, Huang J (2017) Comparison of ocular biometric measurements between a new swept-source optical coherence tomography and a common optical low coherence reflectometry. Sci Rep 7:2484. https://doi.org/10.1038/s41598-017-02463-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sabatino F, Matarazzo F, Findl O, Maurino V (2019) Comparative analysis of 2 swept-source optical coherence tomography biometers. J Cataract Refract Surg 45:1124–1129. https://doi.org/10.1016/j.jcrs.2019.03.020

    Article  PubMed  Google Scholar 

  13. Hoffer KJ, Hoffmann PC, Savini G (2016) Comparison of a new optical biometer using swept-source optical coherence tomography and a biometer using optical low-coherence reflectometry. J Cataract Refract Surg 42:1165–1172. https://doi.org/10.1016/j.jcrs.2016.07.013

    Article  PubMed  Google Scholar 

  14. Huang J, Chen H, Li Y, Chen Z, Gao R, Yu J, Zhao Y, Lu W, McAlinden C, Wang Q (2019) Comprehensive comparison of axial length measurement with three swept-source OCT-based biometers and partial coherence interferometry. J Refract Surg 35:115–120. https://doi.org/10.3928/1081597X-20190109-01

    Article  PubMed  Google Scholar 

  15. Ruíz-Mesa R, Aguilar-Córcoles S, Montés-Micó R, Tañá-Rivero P (2020) Ocular biometric repeatability using a new high-resolution swept-source optical coherence tomographer. Expert Rev Med Devices 17:591–597. https://doi.org/10.1080/17434440.2020.1772050

    Article  CAS  PubMed  Google Scholar 

  16. Kim KY, Choi GS, Kang MS, Kim US (2020) Comparison study of the axial length measured using the new swept-source optical coherence tomography ANTERION and the partial coherence interferometry IOL Master. PLoS ONE 15:e0244590. https://doi.org/10.1371/journal.pone.0244590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schiano-Lomoriello D, Hoffer KJ, Abicca I, Savini G (2021) Repeatability of automated measurements by a new anterior segment optical coherence tomographer and biometer and agreement with standard devices. Sci Rep 11:983. https://doi.org/10.1038/s41598-020-79674-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fişuş AD, Hirnschall ND, Findl O (2021) Comparison of 2 swept-source optical coherence tomography-based biometry devices. J Cataract Refract Surg 47:87–92. https://doi.org/10.1097/j.jcrs.0000000000000373

    Article  PubMed  Google Scholar 

  19. N Shetty L Kaweri A Koshy R Shetty R Nuijts AS Roy 2020 Repeatability of biometry measured by IOLMaster 700, Lenstar LS 900 and Anterion, and its impact on predicted intraocular lens power J Cataract Refract Surghttps://doi.org/10.1097/j.jcrs.0000000000000494

  20. Fişuş AD, Hirnschall ND, Ruiss M, Pilwachs C, Georgiev S, Findl O (2021) Repeatability of 2 swept-source OCT biometers and 1 optical low-coherence reflectometry biometer. J Cataract Refract Surg 47:1302–1307. https://doi.org/10.1097/j.jcrs.0000000000000633

    Article  PubMed  Google Scholar 

  21. Thibos LN, Wheeler W, Horner D (1997) Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error. Optom Vis Sci 74:367–375. https://doi.org/10.1097/00006324-199706000-00019

    Article  CAS  PubMed  Google Scholar 

  22. Bland JM, Altman DG (1996) Measurement error. BMJ 312:1654. https://doi.org/10.1136/bmj.312.7047.1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mcgraw K (1996) Forming inferences about some intraclass correlation coefficients. Psychol Methods 1

  24. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Article  CAS  Google Scholar 

  25. P Tañá-Rivero S Aguilar-Córcoles C Tello-Elordi F Pastor-Pascual R Montés-Micó 2020 Agreement between two swept-source OCT biometers and a Scheimpflug partial coherence interferometer J Cataract Refract Surghttps://doi.org/10.1097/j.jcrs.0000000000000483

  26. Liao X, Peng Y, Liu B, Tan QQ, Lan CJ (2020) Agreement of ocular biometric measurements in young healthy eyes between IOLMaster 700 and OA-2000. Sci Rep 10:3134. https://doi.org/10.1038/s41598-020-59919-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Goebels S, Pattmöller M, Eppig T, Cayless A, Seitz B, Langenbucher A (2015) Comparison of 3 biometry devices in cataract patients. J Cataract Refract Surg 41:2387–2393. https://doi.org/10.1016/j.jcrs.2015.05.028

    Article  PubMed  Google Scholar 

  28. Kohlhaas M, Boehm AG, Spoerl E, Pürsten A, Grein HJ, Pillunat LE (2006) Effect of central corneal thickness, corneal curvature, and axial length on applanation tonometry. Arch Ophthalmol 124:471–476. https://doi.org/10.1001/archopht.124.4.471

    Article  PubMed  Google Scholar 

  29. Olsen T (1992) Sources of error in intraocular lens power calculation. J Cataract Refract Surg 18:125–129. https://doi.org/10.1016/s0886-3350(13)80917-0

    Article  CAS  PubMed  Google Scholar 

  30. C Panthier H Rouger Y Gozlan S Moran D Gatinel 2021 Comparative analysis of 2 biometers using swept-source optical coherence tomography technology J Cataract Refract Surghttps://doi.org/10.1097/j.jcrs.0000000000000704

  31. Akman A, Asena L, Güngör SG (2016) Evaluation and comparison of the new swept source OCT-based IOLMaster 700 with the IOLMaster 500. Br J Ophthalmol 100:1201–1205. https://doi.org/10.1136/bjophthalmol-2015-307779

    Article  PubMed  Google Scholar 

  32. Kurian M, Negalur N, Das S, Puttaiah NK, Haria D, J TS, Thakkar MM, (2016) Biometry with a new swept-source optical coherence tomography biometer: repeatability and agreement with an optical low-coherence reflectometry device. J Cataract Refract Surg 42:577–581. https://doi.org/10.1016/j.jcrs.2016.01.038

    Article  PubMed  Google Scholar 

Download references

Funding

This work was funded by the Wenzhou Key Team of Scientific and Technological Innovation (Grant No. C20170002), Wenzhou Public Welfare Science and Technology Projects (Grant No. Y20170192), Young Talents Programme of Zhejiang Medical and Health Science and Technology Project (Grant No. 2019RC223), Engineering Development Project of Ophthalmology and Optometry (Grant No. GCKF201601), Nature and Science Foundation of China (Grant No. 81570869), and Zhejiang Provincial Foundation of China for Distinguished Young Talents in Medicine and Health (Grant No. 2010QNA018). The funding organization had no role in the design or conduct of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A-Yong Yu.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the (place name of institution and/or national research committee) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, SM., Zhang, JS., Shao, X. et al. Repeatability of a new swept-source optical coherence tomographer and agreement with other three optical biometers. Graefes Arch Clin Exp Ophthalmol 260, 2271–2281 (2022). https://doi.org/10.1007/s00417-022-05579-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-022-05579-9

Keywords

Navigation