Skip to main content

Hyperreflective foci in the choroid of normal eyes

Abstract

Purpose

To investigate hyperreflective choroidal foci (HCF) using en face swept-source optical coherence tomography (SS-OCT) and determine the factors that contribute to the distribution of HCF in normal eyes.

Methods

In this retrospective study, we included healthy eyes with a normal fundus. HCF were defined as hyperreflective spots on en face SS-OCT images. The number, mean area, total area, and circularity of the HCF were compared with various choroid measurements obtained using SS-OCT, SS-OCT angiography, and fundus photography.

Results

We investigated 51 eyes from 51 patients. The mean patient age was 56.0 ± 14.7 years, and 32 (62.7%) were female. The number and total area of HCF did not differ between the female and male patients and the right and left eyes. The number of HCF was correlated with the stromal area of the choroid (r = 0.291, P = 0.040) and subfoveal choroidal vascularity index (r =  − 0.364, P = 0.009). The total area of HCF was correlated with the stromal area of the choroid (r = 0.283, P = 0.045). However, the number and total area of HCF were not correlated with age, degree of macular tessellation, subfoveal choroidal thickness, and choriocapillaris vascular density and flow void area.

Conclusion

HCF were observed in normal eyes, and their distribution was associated with the underlying stromal component of the choroid. The results of this study can be used as a reference for determining abnormal hyperreflective foci in the choroid of the eyes with various diseases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Availability of data and material

We had full access to all the data in the study and take responsibility for the integrity of the data, the accuracy of the data analysis, and decision to submit for publication. The datasets generated and/or analysed during the current study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. 1.

    Bolz M, Schmidt-Erfurth U, Deak G, Mylonas G, Kriechbaum K, Scholda C, Diabetic Retinopathy Research Group V (2009) Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema. Ophthalmology 116:914–920. https://doi.org/10.1016/j.ophtha.2008.12.039

    Article  PubMed  Google Scholar 

  2. 2.

    Vujosevic S, Bini S, Midena G, Berton M, Pilotto E, Midena E (2013) Hyperreflective intraretinal spots in diabetics without and with nonproliferative diabetic retinopathy: an in vivo study using spectral domain OCT. J Diabetes Res 2013:491835. https://doi.org/10.1155/2013/491835

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Framme C, Wolf S, Wolf-Schnurrbusch U (2010) Small dense particles in the retina observable by spectral-domain optical coherence tomography in age-related macular degeneration. Invest Ophthalmol Vis Sci 51:5965–5969. https://doi.org/10.1167/iovs.10-5779

    Article  PubMed  Google Scholar 

  4. 4.

    Coscas G, De Benedetto U, Coscas F, Li Calzi CI, Vismara S, Roudot-Thoraval F, Bandello F, Souied E (2013) Hyperreflective dots: a new spectral-domain optical coherence tomography entity for follow-up and prognosis in exudative age-related macular degeneration. Ophthalmologica 229:32–37. https://doi.org/10.1159/000342159

    Article  PubMed  Google Scholar 

  5. 5.

    Balaratnasingam C, Messinger JD, Sloan KR, Yannuzzi LA, Freund KB, Curcio CA (2017) Histologic and optical coherence tomographic correlates in drusenoid pigment epithelium detachment in age-related macular degeneration. Ophthalmology 124:644–656. https://doi.org/10.1016/j.ophtha.2016.12.034

    Article  PubMed  Google Scholar 

  6. 6.

    Lee H, Ji B, Chung H, Kim HC (2016) Correlation between optical coherence tomographic hyperreflective foci and visual outcomes after anti-vegf treatment in neovascular age-related macular degeneration and polypoidal choroidal vasculopathy. Retina 36:465–475. https://doi.org/10.1097/IAE.0000000000000645

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Ogino K, Murakami T, Tsujikawa A, Miyamoto K, Sakamoto A, Ota M, Yoshimura N (2012) Characteristics of optical coherence tomographic hyperreflective foci in retinal vein occlusion. Retina 32:77–85. https://doi.org/10.1097/IAE.0b013e318217ffc7

    Article  PubMed  Google Scholar 

  8. 8.

    Kang JW, Lee H, Chung H, Kim HC (2014) Correlation between optical coherence tomographic hyperreflective foci and visual outcomes after intravitreal bevacizumab for macular edema in branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol 252:1413–1421. https://doi.org/10.1007/s00417-014-2595-5

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Maruko I, Iida T, Ojima A, Sekiryu T (2011) Subretinal dot-like precipitates and yellow material in central serous chorioretinopathy. Retina 31:759–765. https://doi.org/10.1097/IAE.0b013e3181fbce8e

    Article  PubMed  Google Scholar 

  10. 10.

    Lee H, Lee J, Chung H, Kim HC (2016) Baseline spectral domain optical coherence tomographic hyperreflective foci as a predictor of visual outcome and recurrence for central serous chorioretinopathy. Retina 36:1372–1380. https://doi.org/10.1097/IAE.0000000000000929

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Kuroda M, Hirami Y, Hata M, Mandai M, Takahashi M, Kurimoto Y (2014) Intraretinal hyperreflective foci on spectral-domain optical coherence tomographic images of patients with retinitis pigmentosa. Clin Ophthalmol 8:435–440. https://doi.org/10.2147/OPTH.S58164

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Vujosevic S, Bini S, Torresin T, Berton M, Midena G, Parrozzani R, Martini F, Pucci P, Daniele AR, Cavarzeran F, Midena E (2017) Hyperreflective retinal spots in normal and diabetic eyes: B-scan and en face spectral domain optical coherence tomography evaluation. Retina 37:1092–1103. https://doi.org/10.1097/IAE.0000000000001304

    Article  PubMed  Google Scholar 

  13. 13.

    Saito M, Barbazetto IA, Spaide RF (2013) Intravitreal cellular infiltrate imaged as punctate spots by spectral-domain optical coherence tomography in eyes with posterior segment inflammatory disease. Retina 33:559–565. https://doi.org/10.1097/IAE.0b013e31826710ea

    Article  PubMed  Google Scholar 

  14. 14.

    Oh JH, Oh J, Roh HC (2017) Vitreous hyper-reflective dots in optical coherence tomography and retinal tear in patients with acute posterior vitreous detachment. Curr Eye Res 42:1179–1184. https://doi.org/10.1080/02713683.2017.1289226

    Article  PubMed  Google Scholar 

  15. 15.

    Ota M, Nishijima K, Sakamoto A, Murakami T, Takayama K, Horii T, Yoshimura N (2010) Optical coherence tomographic evaluation of foveal hard exudates in patients with diabetic maculopathy accompanying macular detachment. Ophthalmology 117:1996–2002. https://doi.org/10.1016/j.ophtha.2010.06.019

    Article  PubMed  Google Scholar 

  16. 16.

    Ajay K, Mason F, Gonglore B, Bhatnagar A (2016) Pearl necklace sign in diabetic macular edema: evaluation and significance. Indian J Ophthalmol 64:829–834. https://doi.org/10.4103/0301-4738.195597

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Shinojima A, Hirose T, Mori R, Kawamura A, Yuzawa M (2010) Morphologic findings in acute central serous chorioretinopathy using spectral domain-optical coherence tomography with simultaneous angiography. Retina 30:193–202. https://doi.org/10.1097/IAE.0b013e3181c70203

    Article  PubMed  Google Scholar 

  18. 18.

    Piri N, Nesmith BL, Schaal S (2015) Choroidal hyperreflective foci in Stargardt disease shown by spectral-domain optical coherence tomography imaging: correlation with disease severity. JAMA Ophthalmol 133:398–405. https://doi.org/10.1001/jamaophthalmol.2014.5604

    Article  PubMed  Google Scholar 

  19. 19.

    Roy R, Saurabh K, Shah D, Chowdhury M, Goel S (2019) Choroidal hyperreflective foci: a novel spectral domain optical coherence tomography biomarker in eyes with diabetic macular edema. Asia Pac J Ophthalmol (Phila) 8:314–318. https://doi.org/10.1097/APO.0000000000000249

    Article  Google Scholar 

  20. 20.

    Romano F, Arrigo A, MacLaren RE, Charbel Issa P, Birtel J, Bandello F, Battaglia Parodi M (2020) Hyperreflective foci as a pathogenetic biomarker in choroideremia. Retina 40:1634–1640. https://doi.org/10.1097/IAE.0000000000002645

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Nassisi M, Fan W, Shi Y, Lei J, Borrelli E, Ip M, Sadda SR (2018) Quantity of intraretinal hyperreflective foci in patients with intermediate age-related macular degeneration correlates with 1-year progression. Invest Ophthalmol Vis Sci 59:3431–3439. https://doi.org/10.1167/iovs.18-24143

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Frizziero L, Parrozzani R, Midena G, Miglionico G, Vujosevic S, Pilotto E, Midena E (2016) Hyperreflective intraretinal spots in radiation macular edema on spectral domain optical coherence tomography. Retina 36:1664–1669. https://doi.org/10.1097/iae.0000000000000986

    Article  PubMed  Google Scholar 

  23. 23.

    Ferrara D, Waheed NK, Duker JS (2016) Investigating the choriocapillaris and choroidal vasculature with new optical coherence tomography technologies. Prog Retin Eye Res 52:130–155. https://doi.org/10.1016/j.preteyeres.2015.10.002

    Article  PubMed  Google Scholar 

  24. 24.

    Miller AR, Roisman L, Zhang Q, Zheng F, de Oliveira R, Dias J, Yehoshua Z, Schaal KB, Feuer W, Gregori G, Chu Z, Chen CL, Kubach S, An L, Stetson PF, Durbin MK, Wang RK, Rosenfeld PJ (2017) Comparison between spectral-domain and swept-source optical coherence tomography angiographic imaging of choroidal neovascularization. Invest Ophthalmol Vis Sci 58:1499–1505. https://doi.org/10.1167/iovs.16-20969

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Zhou H, Chu Z, Zhang Q, Dai Y, Gregori G, Rosenfeld PJ, Wang RK (2018) Attenuation correction assisted automatic segmentation for assessing choroidal thickness and vasculature with swept-source OCT. Biomed Opt Express 9:6067–6080. https://doi.org/10.1364/BOE.9.006067

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Zhang Q, Zheng F, Motulsky EH, Gregori G, Chu Z, Chen CL, Li C, de Sisternes L, Durbin M, Rosenfeld PJ, Wang RK (2018) A novel strategy for quantifying choriocapillaris flow voids using swept-source OCT angiography. Invest Ophthalmol Vis Sci 59:203–211. https://doi.org/10.1167/iovs.17-22953

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Kim YH, Lee B, Kang E, Oh J (2021) Choroidal thickness profile and clinical outcomes in eyes with polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol 259:1711–1721. https://doi.org/10.1007/s00417-020-05051-6

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Lee B, Ahn J, Yun C, Kim SW, Oh J (2018) Variation of retinal and choroidal vasculatures in patients with age-related macular degeneration. Invest Ophthalmol Vis Sci 59:5246–5255. https://doi.org/10.1167/iovs.17-23600

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Agrawal R, Salman M, Tan KA, Karampelas M, Sim DA, Keane PA, Pavesio C (2016) Choroidal vascularity index (CVI)-A novel optical coherence tomography parameter for monitoring patients with panuveitis? PLoS ONE 11:e0146344. https://doi.org/10.1371/journal.pone.0146344

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Kim YH, Lee B, Kang E, Oh J (2021) Peripapillary choroidal vascularity outside the macula in patients with central serous chorioretinopathy. Transl Vis Sci Technol 10:9. https://doi.org/10.1167/tvst.10.8.9

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Yun C, Nam KT, Park S, Hwang SY, Oh J (2020) Features of the choriocapillaris on four different optical coherence tomography angiography devices. Int Ophthalmol 40:325–333. https://doi.org/10.1007/s10792-019-01182-w

    Article  PubMed  Google Scholar 

  32. 32.

    Neelam K, Chew RY, Kwan MH, Yip CC, Au Eong KG (2012) Quantitative analysis of myopic chorioretinal degeneration using a novel computer software program. Int Ophthalmol 32:203–209. https://doi.org/10.1007/s10792-012-9542-4

    Article  PubMed  Google Scholar 

  33. 33.

    Yoshihara N, Yamashita T, Ohno-Matsui K, Sakamoto T (2014) Objective analyses of tessellated fundi and significant correlation between degree of tessellation and choroidal thickness in healthy eyes. PLoS ONE 9:e103586. https://doi.org/10.1371/journal.pone.0103586

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Coscas G, Coscas F, Vismara S, Souied E, Soubrane G (2008) Spectral domain OCT in age-related macular degeneration: preliminary results with Spectralis HRA-OCT. J Fr Ophtalmol 31:353–361. https://doi.org/10.1016/s0181-5512(08)71429-3

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Nickla DL, Wallman J (2010) The multifunctional choroid. Prog Retin Eye Res 29:144–168. https://doi.org/10.1016/j.preteyeres.2009.12.002

    Article  PubMed  Google Scholar 

  36. 36.

    Nag TC, Kumari C (2017) Electron microscopy of the human choroid. In: Chhablani J, Ruiz-Medrano J (eds) Choroidal Disorders, 1st edn. Academic Press an imprint of Elsevier, London, pp 7–20

    Chapter  Google Scholar 

  37. 37.

    Heindl LM, Platzl C, Wolfmeier H, Herwig-Carl MC, Kaser-Eichberger A, Strohmaier C, Schroedl F (2021) Choroidal melanocytes: subpopulations of different origin? Ann Anat 238:151775. https://doi.org/10.1016/j.aanat.2021.151775

    Article  PubMed  Google Scholar 

  38. 38.

    McLeod DS, Bhutto I, Edwards MM, Silver RE, Seddon JM, Lutty GA (2016) Distribution and quantification of choroidal macrophages in human eyes with age-related macular degeneration. Invest Ophthalmol Vis Sci 57:5843–5855. https://doi.org/10.1167/iovs.16-20049

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Delori FC, Pflibsen KP (1989) Spectral reflectance of the human ocular fundus. Appl Opt 28:1061–1077. https://doi.org/10.1364/ao.28.001061

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Weiter JJ, Delori FC, Wing GL, Fitch KA (1986) Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes. Invest Ophthalmol Vis Sci 27:145–152

    CAS  PubMed  Google Scholar 

  41. 41.

    Hayasaka S (1989) Aging changes in lipofuscin, lysosomes and melanin in the macular area of human retina and choroid. Jpn J Ophthalmol 33:36–42

    CAS  PubMed  Google Scholar 

  42. 42.

    Harbour JW, Brantley MA Jr, Hollingsworth H, Gordon M (2004) Association between choroidal pigmentation and posterior uveal melanoma in a white population. Br J Ophthalmol 88:39–43. https://doi.org/10.1136/bjo.88.1.39

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Hu DN (2005) Photobiology of ocular melanocytes and melanoma. Photochem Photobiol 81:506–509. https://doi.org/10.1562/2004-08-24-ir-289

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Wakamatsu K, Hu DN, McCormick SA, Ito S (2008) Characterization of melanin in human iridal and choroidal melanocytes from eyes with various colored irides. Pigment Cell Melanoma Res 21:97–105. https://doi.org/10.1111/j.1755-148X.2007.00415.x

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Ung C, Lains I, Silverman RF, Woods R, Lane AM, Papakostas TD, Husain D, Miller JW, Gragoudas ES, Kim IK, Miller JB (2019) Evaluation of choroidal lesions with swept-source optical coherence tomography. Br J Ophthalmol 103:88–93. https://doi.org/10.1136/bjophthalmol-2017-311586

    Article  PubMed  Google Scholar 

  46. 46.

    Yiu G, Vuong VS, Oltjen S, Cunefare D, Farsiu S, Garzel L, Roberts J, Thomasy SM (2016) Effect of uveal melanocytes on choroidal morphology in rhesus macaques and humans on enhanced-depth imaging optical coherence tomography. Invest Ophthalmol Vis Sci 57:5764–5771. https://doi.org/10.1167/iovs.16-20070

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Schraermeyer U, Addicks K, Kociok N, Esser P, Heimann K (1998) Capillaries are present in Bruch’s membrane at the ora serrata in the human eye. Invest Ophthalmol Vis Sci 39:1076–1084

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Korea Medical Device Development Fund grant funded by the Korean government (Ministry of Science and ICT, Ministry of Trade, Industry and Energy, Ministry of Health & Welfare, Ministry of Food and Drug Safety) (Project Number: 1711137942, KMDF_PR_20200901_0026).

Author information

Affiliations

Authors

Contributions

Y.H.K.: data collection, imaging analysis, drafting the work, manuscript review, and final approval. J.O.: conception of the study, data collection, imaging analysis, interpretation of data, drafting of the work, manuscript review, and final approval. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jaeryung Oh.

Ethics declarations

Ethics approval

This study was performed in accordance with the principles of the Declaration of Helsinki and approved by the Institutional Review Board of Korea University Anam Hospital, Seoul, Korea (IRB number: 2020AN0445).

Consent to participate

This retrospective study involved no more than minimal risk to subjects, and the IRB of Korea University Anam Hospital approved our request to waive off the requirement of informed consent.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 82 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, Y.H., Oh, J. Hyperreflective foci in the choroid of normal eyes. Graefes Arch Clin Exp Ophthalmol (2021). https://doi.org/10.1007/s00417-021-05469-6

Download citation

Keywords

  • Choriocapillaris
  • Choroid
  • Choroidal vascularity
  • Fundus tessellation
  • Hyperreflective foci
  • Swept-source optical coherence tomography