Skip to main content
Log in

Benefits of using corneal topography to choose subjective refraction technique in keratoconus (RE-CON): a prospective comparative crossover clinical study

  • Cornea
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

In prospective no-masking, comparative, crossover monocenter clinical trial, we aimed to evaluate whether the optimal subjective refraction technique varies with the keratoconus topography and to identify relevant topographic criteria.

Method

This study included 72 keratoconus eyes with impaired visual acuity. Each eye tested three methods of refraction (Jackson cylinder, astigmatism dial, stenopeic slit), resulting in three eyeglass lenses. Patients were assigned to the group corresponding to the eyeglass lens offering the best visual acuity. Five topographical characteristics were collected via the Pentacam: mean keratometry (Km), maximum keratometry (Kmax), distance from corneal center to Kmax (dKmax), Belin/Ambrosio Display (BAD_D), and index of surface variance (ISV).

Results

Forty-six eyes were included in the dial group (64.8%), 23 eyes in the cylinder group (32.4%), and only 2 eyes in the slit group (2.8%); thus, we only compared dial and cylinder groups. The main analysis retrieved a significant probability to choose dial technic for BAD_D (p = 0.024); when BAD_D is > 9.71 (ROC threshold), the positive predictive value (PPV) = 89.5%, and for ISV, p = 0.012; when ISV is > 77, PPV = 89.1%. The sub-analysis of patients with different visual acuities between cylinder and dial confirmed these results with slightly different thresholds: the probability to choose dial technic was for BAD_D, p = 0.03; when BAD_D is > 7.55, PPV = 90%, and for ISV, p = 0.0084; when ISV is > 71, PPV = 88.5%.

Conclusion

Refraction method is linked to topographic indices ISV and BAD_D. A BAD_D > 7.55 indicates the dial method. In addition to keratoconus screening and diagnosis, this study suggests a new application of the topographer to select a suitable refraction method for eyeglass prescription.

Trial registration

Study registered on the ClinicalTrials.gov database under n°: NCT04174209.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gomes JAP, Tan D, Rapuano CJ et al (2015) Global consensus on keratoconus and ectatic diseases. Cornea 34:359–369. https://doi.org/10.1097/ICO.0000000000000408

    Article  PubMed  Google Scholar 

  2. Bourdiol AM, Bron A, Amalric P (2012) Kératocône. In: SNOF. https://www.snof.org/encyclopedie/k%C3%A9ratoc%C3%B4ne. Accessed 26 Nov 2019

  3. Gokhale NS (2013) Epidemiology of keratoconus. Indian J Ophthalmol 61:382–383. https://doi.org/10.4103/0301-4738.116054

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tuft SJ, Moodaley LC, Gregory WM et al (1994) Prognostic factors for the progression of keratoconus. Ophthalmology 101:439–447. https://doi.org/10.1016/s0161-6420(94)31313-3

    Article  PubMed  CAS  Google Scholar 

  5. Zadnik K, Steger-May K, Fink BA et al (2002) Between-eye asymmetry in keratoconus. Cornea 21:671–679. https://doi.org/10.1097/00003226-200210000-00008

    Article  PubMed  Google Scholar 

  6. McMahon TT, Edrington TB, Szczotka-Flynn L et al (2006) Longitudinal changes in corneal curvature in keratoconus. Cornea 25:296–305. https://doi.org/10.1097/01.ico.0000178728.57435.df

    Article  PubMed  Google Scholar 

  7. Levit A, Benwell M, Evans BJW (2020) Randomised controlled trial of corneal vs. scleral rigid gas permeable contact lenses for keratoconus and other ectatic corneal disorders. Cont Lens Anterior Eye 43(6):543–552. https://doi.org/10.1016/j.clae.2019.12.007

  8. Jinabhai AN (2020) Customised aberration-controlling corrections for keratoconic patients using contact lenses. Clin Exp Optom 103:31–43. https://doi.org/10.1111/cxo.12937

    Article  PubMed  Google Scholar 

  9. Yuksel Elgin C, Iskeleli G, Aydin O (2018) Effects of the rigid gas permeable contact lense use on tear and ocular surface among keratoconus patients. Cont Lens Anterior Eye 41:273–276. https://doi.org/10.1016/j.clae.2017.12.013

    Article  PubMed  Google Scholar 

  10. Li W, Wang B (2017) Efficacy and safety of transepithelial corneal collagen crosslinking surgery versus standard corneal collagen crosslinking surgery for keratoconus: a meta-analysis of randomized controlled trials. BMC Ophthalmol 17:262. https://doi.org/10.1186/s12886-017-0657-2

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kaiserman I, Mimouni M, Rabina G (2019) Epithelial photorefractive keratectomy and corneal cross-linking for keratoconus: the Tel-Aviv protocol. J Refract Surg 35:377–382. https://doi.org/10.3928/1081597X-20190514-01

    Article  PubMed  Google Scholar 

  12. Montalt JC, Porcar E, España-Gregori E, Peris-Martínez C (2019) Visual quality with corneo-scleral contact lenses after intracorneal ring segment (ICRS) implantation for keratoconus management. Cont Lens Anterior Eye 42:111–116. https://doi.org/10.1016/j.clae.2018.07.006

    Article  PubMed  Google Scholar 

  13. Soeters N, Muijzer MB, Molenaar J et al (2018) Autorefraction versus manifest refraction in patients with keratoconus. J Refract Surg 34:30–34. https://doi.org/10.3928/1081597X-20171130-01

    Article  PubMed  Google Scholar 

  14. Al-Tuwairqi WS, Ogbuehi KC, Razzouk H et al (2017) Agreement between autorefraction and subjective refraction in keraring-implanted keratoconic eyes. Eye Contact Lens 43:116–122. https://doi.org/10.1097/ICL.0000000000000244

    Article  PubMed  Google Scholar 

  15. Jinabhai A, O’Donnell C, Radhakrishnan H (2010) A comparison between subjective refraction and aberrometry-derived refraction in keratoconus patients and control subjects. Curr Eye Res 35:703–714. https://doi.org/10.3109/02713681003797921

    Article  PubMed  Google Scholar 

  16. Greenstein SA, Fry KL, Hersh PS (2011) Corneal topography indices after corneal collagen crosslinking for keratoconus and corneal ectasia: one-year results. J Cataract Refract Surg 37:1282–1290. https://doi.org/10.1016/j.jcrs.2011.01.029

    Article  PubMed  Google Scholar 

  17. Alió JL, Piñero DP, Alesón A et al (2011) Keratoconus-integrated characterization considering anterior corneal aberrations, internal astigmatism, and corneal biomechanics. J Cataract Refract Surg 37:552–568. https://doi.org/10.1016/j.jcrs.2010.10.046

    Article  PubMed  Google Scholar 

  18. Jia H-Z, Peng X-J (2018) Efficacy of iontophoresis-assisted epithelium-on corneal cross-linking for keratoconus. Int J Ophthalmol 11:687–694. https://doi.org/10.18240/ijo.2018.04.25

    Article  PubMed  PubMed Central  Google Scholar 

  19. Raiskup F, Theuring A, Pillunat LE, Spoerl E (2015) Corneal collagen crosslinking with riboflavin and ultraviolet-A light in progressive keratoconus: ten-year results. J Cataract Refract Surg 41:41–46. https://doi.org/10.1016/j.jcrs.2014.09.033

    Article  PubMed  Google Scholar 

  20. Kojima T, Nishida T, Nakamura T et al (2020) Keratoconus screening using values derived from auto-keratometer measurements: a multicenter study. Am J Ophthalmol. https://doi.org/10.1016/j.ajo.2020.02.017

    Article  PubMed  Google Scholar 

  21. Kandel H, Pesudovs K, Watson SL (2020) Measurement of quality of life in keratoconus. Cornea 39:386–393. https://doi.org/10.1097/ICO.0000000000002170

    Article  PubMed  Google Scholar 

  22. Colin J, Cochener B, Savary G, Malet F (2000) Correcting keratoconus with intracorneal rings. J Cataract Refract Surg 26:1117–1122. https://doi.org/10.1016/s0886-3350(00)00451-x

    Article  PubMed  CAS  Google Scholar 

  23. Vega-Estrada A, Alio JL, Brenner LF et al (2013) Outcome analysis of intracorneal ring segments for the treatment of keratoconus based on visual, refractive, and aberrometric impairment. Am J Ophthalmol 155:575-584.e1. https://doi.org/10.1016/j.ajo.2012.08.020

    Article  PubMed  Google Scholar 

  24. Song Y, Zhang J, Pan Z (2019) Systematic review and meta-analysis of clinical outcomes of penetrating keratoplasty versus deep anterior lamellar keratoplasty for keratoconus. Exp Clin Transplant. https://doi.org/10.6002/ect.2019.0123

    Article  PubMed  Google Scholar 

  25. Naderan M, Jahanrad A (2017) Topographic, tomographic and biomechanical corneal changes during pregnancy in patients with keratoconus: a cohort study. Acta Ophthalmol 95:e291–e296. https://doi.org/10.1111/aos.13296

    Article  PubMed  Google Scholar 

  26. Taradaj K, Ginda T, Maciejewicz P et al (2018) Pregnancy and the eye. Changes in morphology of the cornea and the anterior chamber of the eye in pregnant woman. Ginekol Pol 89:695–699. https://doi.org/10.5603/GP.a2018.0117

    Article  PubMed  Google Scholar 

  27. Agrawal N, Agarwal LT, Lavaju P, Chaudhary SK (2018) Physiological ocular changes in various trimesters of pregnancy. Nepal J Ophthalmol 10:16–22. https://doi.org/10.3126/nepjoph.v10i1.21685

    Article  PubMed  Google Scholar 

  28. Lopes T, B, Lopes T, C Ramos I, et al (2012) Correlation of topometric and tomographic indices with visual acuity in patients with keratoconus. International Journal of Keratoconus and Ectatic Corneal Diseases 1:167–172. https://doi.org/10.5005/jp-journals-10025-1032

    Article  Google Scholar 

  29. Fredriksson A, Behndig A (2016) Eccentric small-zone ray tracing wavefront aberrometry for refraction in keratoconus. Acta Ophthalmol 94:679–684. https://doi.org/10.1111/aos.13183

    Article  PubMed  Google Scholar 

  30. Schmitt P-T, Simonpoli S, Colin J (2008) Kératocône : corrélations clinico-topographiques évaluées par l’Orbscan ®. J Fr Ophtalmol. 8 mars 29 9:1001‑11. 101019-200607892

  31. Değirmenci C, Palamar M, İsmayilova N et al (2019) Topographic evaluation of unilateral keratoconus patients. Turk J Ophthalmol 49:117–122. https://doi.org/10.4274/tjo.galenos.2018.90958

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lombardo M, Giannini D, Lombardo G, Serrao S (2017) Randomized controlled trial comparing transepithelial corneal cross-linking using iontophoresis with the Dresden protocol in progressive keratoconus. Ophthalmology 124:804–812. https://doi.org/10.1016/j.ophtha.2017.01.040

    Article  PubMed  Google Scholar 

  33. Wittig-Silva C, Chan E, Islam FMA et al (2014) A randomized, controlled trial of corneal collagen cross-linking in progressive keratoconus: three-year results. Ophthalmology 121:812–821. https://doi.org/10.1016/j.ophtha.2013.10.028

    Article  PubMed  Google Scholar 

  34. Kosekahya P, Caglayan M, Koc M et al (2019) Longitudinal evaluation of the progression of keratoconus using a novel progression display. Eye Contact Lens 45:324–330. https://doi.org/10.1097/ICL.0000000000000582

    Article  PubMed  Google Scholar 

  35. Hashemi H, Beiranvand A, Yekta A et al (2016) Pentacam top indices for diagnosing subclinical and definite keratoconus. Journal of Current Ophthalmology 28:21–26. https://doi.org/10.1016/j.joco.2016.01.009

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gatinel D (2019) Indices and screening tests for subclinical keratoconus. https://www.gatinel.com/recherche-formation/keratocone-2/indices-and-screening-tests-for-subclinical-keratoconus/. Accessed 24 Feb 2019

  37. Shajari M, Steinwender G, Herrmann K et al (2019) Evaluation of keratoconus progression. Br J Ophthalmol 103:551–557. https://doi.org/10.1136/bjophthalmol-2017-311651

    Article  PubMed  Google Scholar 

  38. Orucoglu F, Toker E (2015) Comparative analysis of anterior segment parameters in normal and keratoconus eyes generated by Scheimpflug tomography. J Ophthalmol 2015:925414. https://doi.org/10.1155/2015/925414

  39. Ferreira-Mendes J, Lopes BT, Faria-Correia F et al (2019) Enhanced ectasia detection using corneal tomography and biomechanics. Am J Ophthalmol 197:7–16. https://doi.org/10.1016/j.ajo.2018.08.054

    Article  PubMed  Google Scholar 

  40. Grzybowski A, Kanclerz P (2018) Beginnings of astigmatism understanding and management in the 19th century. Eye Contact Lens 44(Suppl 1):S22–S29. https://doi.org/10.1097/ICL.0000000000000449

    Article  PubMed  Google Scholar 

  41. Schiefer U, Kraus C, Baumbach P et al (2016) Refractive errors Dtsch Arztebl Int 113:693–702. https://doi.org/10.3238/arztebl.2016.0693

    Article  PubMed  Google Scholar 

  42. AAO, SFO, Albou-Ganem C (2015) Optique clinique. Elsevier Masson

  43. Brooks NO, Greenstein S, Fry K, Hersh PS (2012) Patient subjective visual function after corneal collagen crosslinking for keratoconus and corneal ectasia. J Cataract Refract Surg 38:615–619. https://doi.org/10.1016/j.jcrs.2011.11.029

    Article  PubMed  Google Scholar 

  44. Delrivo M, Ruiseñor Vázquez PR, Galletti JD et al (2014) Agreement between placido topography and Scheimpflug tomography for corneal astigmatism assessment. J Refract Surg 30:49–53. https://doi.org/10.3928/1081597x-20131217-06

    Article  PubMed  Google Scholar 

  45. Asharlous A, Khabazkhoob M, Yekta A, Hashemi H (2017) Comprehensive profile of bilateral astigmatism: rule similarity and symmetry patterns of the axes in the fellow eyes. Ophthalmic Physiol Opt 37:33–41. https://doi.org/10.1111/opo.12344

    Article  PubMed  Google Scholar 

  46. Tabachnick BG, Fidell LS (2001) Using multivariate statistic, 4th edn. Allyn & Bacon, Boston

    Google Scholar 

  47. Comrey AL, Lee HB (1992) A first course in factor analysis, 2nd ed. Lawrence Erlbaum Associates, Inc

  48. Kwiatkowski F, Girard M, Hacene K, Berlie J (2000) Sem: a suitable statistical software adapted for research in oncology. Bull Cancer 87:715–721

    PubMed  CAS  Google Scholar 

  49. Piñero DP, Alio JL, Barraquer RI et al (2010) Corneal biomechanics, refraction, and corneal aberrometry in keratoconus: an integrated study. Invest Ophthalmol Vis Sci 51:1948–1955. https://doi.org/10.1167/iovs.09-4177

    Article  PubMed  Google Scholar 

  50. John AK, Asimellis G (2013) Revisiting keratoconus diagnosis and progression classification based on evaluation of corneal asymmetry indices, derived from Scheimpflug imaging in keratoconic and suspect cases. Clin Ophthalmol 7:1539–1548. https://doi.org/10.2147/OPTH.S44741

    Article  PubMed Central  Google Scholar 

  51. Gatinel D (2019) Indices de dépistage. https://www.gatinel.com/recherche-formation/keratocone-2/indices-de-depistage/. Accessed 20 Nov 2019

  52. Roshdy MM, Wahba SS, Fikry RR (2018) New corneal assessment index from the relational thickness and other OCULUS values (CAIRO Index). Clin Ophthalmol 12:1527–1532. https://doi.org/10.2147/OPTH.S171827

    Article  PubMed  PubMed Central  Google Scholar 

  53. Atchison DA, Schmid KL, Edwards KP et al (2001) The effect of under and over refractive correction on visual performance and spectacle lens acceptance. Ophthalmic Physiol Opt 21:255–261. https://doi.org/10.1046/j.1475-1313.2001.00588.x

    Article  PubMed  CAS  Google Scholar 

  54. Freeman CE, Evans BJW (2010) Investigation of the causes of non-tolerance to optometric prescriptions for spectacles. Ophthalmic Physiol Opt 30:1–11. https://doi.org/10.1111/j.1475-1313.2009.00682.x

    Article  PubMed  Google Scholar 

  55. Orphanet (2018) Centre de référence du kératocône (CRNK) - centre de compétence. https://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=fr&Expert=512855. Accessed 6 Aug 2021

  56. Woog K, Picherau L, Pean V, Gatinel D (2019) Répétabilité intra-examinateurs et reproductibilité inter-examinateurs d’une réfraction subjective. Réal Ophtalmol 47–53

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Margaux Metzger or Valentin Navel.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Committee for the Protection of Persons West III obtained October 23, 2019: 19.10.81/SI CNRIPH 19.09.12.62047/reference, 2019-A01624-53. Protocol V.1 (20/03/2019). This was approved by the CNIL and in accordance with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 45 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metzger, M., Navel, V., Barrière, JV. et al. Benefits of using corneal topography to choose subjective refraction technique in keratoconus (RE-CON): a prospective comparative crossover clinical study. Graefes Arch Clin Exp Ophthalmol 260, 197–207 (2022). https://doi.org/10.1007/s00417-021-05382-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-021-05382-y

Keywords

Navigation