Skip to main content

Advertisement

Log in

Relationship of axial length and corneal biomechanical properties with susceptibility to unilateral normal-tension glaucoma

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Corneal biomechanics, reflecting structural vulnerabilities of the eyeball, may participate in the pathogenesis of unilateral normal-tension glaucoma. This study investigated the pathophysiology of unilateral normal-tension glaucoma using Corvis ST (OCULUS Optikgeräte GmbH) and other ocular characteristics.

Methods

Eighty-three patients with normal-tension glaucoma with unilateral visual field loss and structurally unaffected fellow eyes and 111 healthy controls were included in this prospective study. Dynamic corneal response parameters, intraocular pressure measured by rebound tonometry, central corneal thickness, and axial length were assessed on the same day. Measurements were compared between affected eyes, unaffected fellow eyes, and control eyes. Risk factors for normal-tension glaucoma and unilateral involvement were the main outcome measures.

Results

A shorter first applanation time (adjusted odds ratio, 0.061; 95% confidence interval, 0.018–0.215) and a larger peak distance (adjusted odds ratio, 4.935; 95% confidence interval, 1.547–15.739) were significant risk factors for normal-tension glaucoma and were associated with greater glaucoma severity (both P < 0.001). Axial length (adjusted odds ratio, 29.015; 95% confidence interval, 4.452–189.083) was the predominant risk factor for unilateral involvement in patients with normal-tension glaucoma.

Conclusion

The eyes with normal-tension glaucoma were more compliant than healthy eyes. Axial elongation-associated optic nerve strain may play an important role in unilateral normal-tension glaucoma with similar corneal and scleral biomechanics in both eyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gittinger JW Jr (2019) Management of normal tension glaucoma. Surv Ophthalmol 64:101

    Article  Google Scholar 

  2. Yamamoto T, Kitazawa Y (1998) Vascular pathogenesis of normal-tension glaucoma: a possible pathogenetic factor, other than intraocular pressure, of glaucomatous optic neuropathy. Prog Retin Eye Res 17:127–143

    Article  CAS  Google Scholar 

  3. Mallick J, Devi L, Malik PK, Mallick J (2016) Update on normal tension glaucoma. J Ophthalmic Vis Res 11:204–208

    Article  Google Scholar 

  4. Kim C, Kim TW (2009) Comparison of risk factors for bilateral and unilateral eye involvement in normal-tension glaucoma. Invest Ophthalmol Vis Sci 50:1215–1220

    Article  Google Scholar 

  5. Killer HE, Pircher A (2018) Normal tension glaucoma: review of current understanding and mechanisms of the pathogenesis. Eye 32:924–930

    Article  CAS  Google Scholar 

  6. Miki A, Yasukura Y, Weinreb RN et al (2020) Dynamic Scheimpflug ocular biomechanical parameters in untreated primary open angle glaucoma eyes. Invest Ophthalmol Vis Sci 61:19

    Article  Google Scholar 

  7. Vinciguerra R, Rehman S, Vallabh NA et al (2020) Corneal biomechanics and biomechanically corrected intraocular pressure in primary open-angle glaucoma, ocular hypertension and controls. Br J Ophthalmol 104:121–126

    Article  Google Scholar 

  8. Copt RP, Thomas R, Mermoud A (1999) Corneal thickness in ocular hypertension, primary open-angle glaucoma, and normal tension glaucoma. Arch Ophthalmol 117:14–16

    Article  CAS  Google Scholar 

  9. Morad Y, Sharon E, Hefetz L, Nemet P (1998) Corneal thickness and curvature in normal-tension glaucoma. Am J Ophthalmol 125:164–168

    Article  CAS  Google Scholar 

  10. Helmy H, Leila M, Zaki AA (2016) Corneal biomechanics in asymmetrical normal-tension glaucoma. Clin Ophthalmol 10:503–510

    PubMed  PubMed Central  Google Scholar 

  11. Park JH, Jun RM, Choi KR (2015) Significance of corneal biomechanical properties in patients with progressive normal-tension glaucoma. Br J Ophthalmol 99:746–751

    Article  Google Scholar 

  12. Poinoosawmy D, Fontana L, Wu JX, Bunce CV, Hitchings RA (1998) Frequency of asymmetric visual field defects in normal-tension and high-tension glaucoma. Ophthalmology 105:988–991

    Article  CAS  Google Scholar 

  13. Kim DM, Hwang US, Park KH, Kim SH (2005) Retinal nerve fiber layer thickness in the fellow eyes of normal-tension glaucoma patients with unilateral visual field defect. Am J Ophthalmol 140:165–166

    Article  Google Scholar 

  14. Kwun Y, Han JC, Kee C (2015) Comparison of lamina cribrosa thickness in normal tension glaucoma patients with unilateral visual field defect. Am J Ophthalmol 159:512–518

    Article  Google Scholar 

  15. Cho HK, Suh W, Kee C (2015) Visual and structural prognosis of the untreated fellow eyes of unilateral normal tension glaucoma patients. Graefes Arch Clin Exp Ophthalmol 253:1547–1555

    Article  Google Scholar 

  16. Kotecha A (2007) What biomechanical properties of the cornea are relevant for the clinician? Surv Ophthalmol 52 Suppl 2:S109–S114

    Article  Google Scholar 

  17. Li BB, Cai Y, Pan YZ et al (2017) Corneal biomechanical parameters and asymmetric visual field damage in patients with untreated normal tension glaucoma. Chin Med J 130:334–339

    Article  Google Scholar 

  18. Budenz DL, Rhee P, Feuer WJ, McSoley J, Johnson CA, Anderson DR (2002) Sensitivity and specificity of the Swedish interactive threshold algorithm for glaucomatous visual field defects. Ophthalmology 109:1052–1058

    Article  Google Scholar 

  19. Anderson D, Patella V (1999) Automated Static Perimetry, 2nd edn. Mosby, St. Louis

    Google Scholar 

  20. Hodapp E, Parrish RK, Anderson DR (1993) Clinical Decisions in Glaucoma. Mosby, St Louis

    Google Scholar 

  21. Wu N, Chen Y, Yu X, Li M, Wen W, Sun X (2016) Changes in corneal biomechanical properties after long-term topical prostaglandin therapy. PLoS One 11:e0155527

    Article  CAS  Google Scholar 

  22. Johnson TV, Jampel HD (2020) Intraocular pressure following pre-randomization glaucoma medication washout in the HORIZON and COMPASS trials. Am J Ophthalmol 216:110–120

    Article  CAS  Google Scholar 

  23. Roberts CJ, Mahmoud AM, Bons JP et al (2017) Introduction of two novel stiffness parameters and interpretation of air puff-induced biomechanical deformation parameters with a dynamic Scheimpflug analyzer. J Refract Surg 33:266–273

    Article  Google Scholar 

  24. Joda AA, Shervin MM, Kook D, Elsheikh A (2016) Development and validation of a correction equation for Corvis tonometry. Comput Methods Biomech Biomed Engin 19:943–953

    Article  Google Scholar 

  25. Valbon BF, Ambrósio R Jr, Fontes BM, Luz A, Roberts CJ, Alves MR (2014) Ocular biomechanical metrics by CorVis ST in healthy Brazilian patients. J Refract Surg 30:468–473

    Article  Google Scholar 

  26. Nguyen BA, Reilly MA, Roberts CJ (2020) Biomechanical contribution of the sclera to dynamic corneal response in air-puff induced deformation in human donor eyes. Exp Eye Res 191:107904

    Article  CAS  Google Scholar 

  27. Wang J, Li Y, Jin Y, Yang X, Zhao C, Long Q (2015) Corneal biomechanical properties in myopic eyes measured by a dynamic Scheimpflug analyzer. J Ophthalmol 2015:161869

    PubMed  PubMed Central  Google Scholar 

  28. Perera SA, Wong TY, Tay WT, Foster PJ, Saw SM, Aung T (2010) Refractive error, axial dimensions, and primary open-angle glaucoma: the Singapore Malay Eye Study. Arch Ophthalmol 128:900–905

    Article  Google Scholar 

  29. Tan NYQ, Sng CCA, Ang M (2019) Myopic optic disc changes and its role in glaucoma. Curr Opin Ophthalmol 30:89–96

    Article  Google Scholar 

  30. Han JC, Cho SH, Sohn DY, Kee C (2016) The characteristics of lamina cribrosa defects in myopic eyes with and without open-angle glaucoma. Invest Ophthalmol Vis Sci 57:486–494

    Article  CAS  Google Scholar 

  31. Amano S, Nejima R, Inoue K, Miyata K (2019) Effect of topical prostaglandins on the biomechanics and shape of the cornea. Graefes Arch Clin Exp Ophthalmol 257:2213–2219

    Article  CAS  Google Scholar 

  32. Wei Y, Xu L, Song H (2017) Application of Corvis ST to evaluate the effect of femtosecond laser-assisted cataract surgery on corneal biomechanics. Exp Ther Med 14:1626–1632

    Article  Google Scholar 

  33. Kim DW, Jeoung JW, Kim YW et al (2016) Prelamina and lamina cribrosa in glaucoma patients with unilateral visual field loss. Invest Ophthalmol Vis Sci 57:1662–1670

    Article  Google Scholar 

  34. Fontana L, Armas R, Garway-Heath DF, Bunce CV, Poinoosawmy D, Hitchings RA (1999) Clinical factors influencing the visual prognosis of the fellow eyes of normal tension glaucoma patients with unilateral field loss. Br J Ophthalmol 83:1002–1005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the statistical assistance provided by the Centre of Statistical Consultation and Research in the Department of Medical Research, National Taiwan University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Chia Su.

Ethics declarations

Ethics approval

All procedures used in this study were approved by the Ethics Review Board of the National Taiwan University Hospital, and adhered to the tenets of the Declaration of Helsinki.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YY., Wang, TH., Huang, JY. et al. Relationship of axial length and corneal biomechanical properties with susceptibility to unilateral normal-tension glaucoma. Graefes Arch Clin Exp Ophthalmol 260, 255–264 (2022). https://doi.org/10.1007/s00417-021-05346-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-021-05346-2

Keywords

Navigation