Skip to main content

Advertisement

Log in

Novel area-based optic nerve head parameter to distinguish glaucoma from non-glaucomatous retinal nerve fiber layer defect in branch retinal vein occlusion

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to assess the diagnostic ability of the new area-based parameter retinal nerve fiber layer to disc ratio (RDR) for discriminating between glaucoma and non-glaucomatous retinal nerve fiber layer defects (RNFLDs).

Methods

This retrospective cross-sectional study included 42 branch retinal vein occlusion (BRVO) eyes with RNFLD, 42 open-angle glaucoma (OAG) eyes, and 42 healthy control eyes that were matched with optic disc size. The RDR, peripapillary retinal nerve fiber layer thickness (pRNFLT), Bruch’s membrane opening-minimum rim width (BMO-MRW), and Bruch’s membrane opening-minimum rim area (BMO-MRA) were analyzed. The areas under the receiver operating characteristic curves (AUCs) were calculated for each parameter.

Results

The OAG and BRVO groups had similar global pRNFLT (87.57 ± 7.07 µm and 89.71 ± 12.21 µm, respectively), but these were thinner than those of the healthy group (102.71 ± 8.95 µm, p < 0.001 and p < 0.001, respectively). RDR was lowest in the BRVO group (0.755 ± 0.121, p < 0.001) and highest in the OAG group (1.111 ± 0.145, p < 0.001). Global BMO-MRW was significantly lower in the OAG group (194.36 ± 23.09 µm) than in the BRVO (269.69 ± 42.77 µm, p < 0.001) and healthy (273.48 ± 30.92 µm, p < 0.001) groups. Total BMO-MRA of the OAG group (0.88 ± 0.12 mm2) was significantly lower than that of the BRVO (1.32 ± 0.19 mm2, p < 0.001) and healthy (1.30 ± 0.21 mm2, p < 0.001) groups. AUC for discriminating between the OAG and BRVO was 0.986 for total BMO-MRA and 0.970 for RDR (p = 0.192).

Conclusion

In clinical practice, RDR may perform well as a parameter to distinguish between glaucoma and non-glaucomatous RNFLD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All research data is available and complies with standards.

Code availability

Not applicable.

References

  1. Quigley HA, Addicks EM, Green WR (1982) Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Archives of ophthalmol (Chicago, Ill : 1960) 100(1):135–146. https://doi.org/10.1001/archopht.1982.01030030137016

    Article  CAS  Google Scholar 

  2. Lopes de Faria JM, Russ H, Costa VP (2002) Retinal nerve fibre layer loss in patients with type 1 diabetes mellitus without retinopathy. Br J Ophthalmol 86(7):725–728. https://doi.org/10.1136/bjo.86.7.725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Choplin NT (2006) Diabetes-associated retinal nerve fiber damage evaluated with scanning laser polarimetry. Am J Ophthalmol 142 (6):1093; author reply 1093–1094. https://doi.org/10.1016/j.ajo.2006.09.017

  4. Sugimoto M, Sasoh M, Ido M, Wakitani Y, Takahashi C, Uji Y (2005) Detection of early diabetic change with optical coherence tomography in type 2 diabetes mellitus patients without retinopathy. Ophthalmologica 219(6):379–385. https://doi.org/10.1159/000088382

    Article  PubMed  Google Scholar 

  5. Contreras I, Noval S, Rebolleda G, Munoz-Negrete FJ (2007) Follow-up of nonarteritic anterior ischemic optic neuropathy with optical coherence tomography. Ophthalmology 114(12):2338–2344. https://doi.org/10.1016/j.ophtha.2007.05.042

    Article  PubMed  Google Scholar 

  6. Aggarwal D, Tan O, Huang D, Sadun AA (2012) Patterns of ganglion cell complex and nerve fiber layer loss in nonarteritic ischemic optic neuropathy by Fourier-domain optical coherence tomography. Invest Ophthalmol Vis Sci 53(8):4539–4545. https://doi.org/10.1167/iovs.11-9300

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gonul S, Koktekir BE, Bakbak B, Gedik S (2013) Comparison of the ganglion cell complex and retinal nerve fibre layer measurements using Fourier domain optical coherence tomography to detect ganglion cell loss in non-arteritic anterior ischaemic optic neuropathy. Br J Ophthalmol 97(8):1045–1050. https://doi.org/10.1136/bjophthalmol-2013-303438

    Article  PubMed  Google Scholar 

  8. Fard MA, Afzali M, Abdi P, Chen R, Yaseri M, Azaripour E, Moghimi S (2016) Optic nerve head morphology in nonarteritic anterior ischemic optic neuropathy compared to open-angle glaucoma. Invest Ophthalmol Vis Sci 57(11):4632–4640. https://doi.org/10.1167/iovs.16-19442

    Article  PubMed  Google Scholar 

  9. Kim CS, Shin KS, Lee HJ, Jo YJ, Kim JY (2014) Sectoral retinal nerve fiber layer thinning in branch retinal vein occlusion. Retina (Philadelphia, Pa) 34(3):525–530. https://doi.org/10.1097/IAE.0b013e3182a2e746

    Article  Google Scholar 

  10. Alshareef RA, Barteselli G, You Q, Goud A, Jabeen A, Rao HL, Jabeen A, Chhablani J (2016) In vivo evaluation of retinal ganglion cells degeneration in eyes with branch retinal vein occlusion. Br J Ophthalmol 100(11):1506–1510. https://doi.org/10.1136/bjophthalmol-2015-308106

    Article  PubMed  Google Scholar 

  11. Gmeiner JM, Schrems WA, Mardin CY, Laemmer R, Kruse FE, Schrems-Hoesl LM (2016) Comparison of Bruch’s membrane opening minimum rim width and peripapillary retinal nerve fiber layer thickness in early glaucoma assessment. Invest Ophthalmol Vis Sci 57(9):OCT575-584. https://doi.org/10.1167/iovs.15-18906

    Article  PubMed  Google Scholar 

  12. Imamoglu S, Celik NB, Sevim MS, Pekel G, Ercalik NY, TurksevenKumral E, Bardak H (2017) Structure-function relationship between the Bruch membrane opening-based minimum rim width and visual field defects in advanced glaucoma. J Glaucoma 26(6):561–565. https://doi.org/10.1097/IJG.0000000000000675

    Article  PubMed  Google Scholar 

  13. Reis ASC, Zangalli CES, Abe RY, Silva AL, Vianna JR, Vasconcellos JPC, Costa VP (2017) Intra- and interobserver reproducibility of Bruch’s membrane opening minimum rim width measurements with spectral domain optical coherence tomography. Acta Ophthalmol 95(7):e548–e555. https://doi.org/10.1111/aos.13464

    Article  PubMed  CAS  Google Scholar 

  14. Enders P, Adler W, Schaub F, Hermann MM, Dietlein T, Cursiefen C, Heindl LM (2016) Novel Bruch’s membrane opening minimum rim area equalizes disc size dependency and offers high diagnostic power for glaucoma. Invest Ophthalmol Vis Sci 57(15):6596–6603. https://doi.org/10.1167/iovs.16-20561

    Article  PubMed  Google Scholar 

  15. Gardiner SK, Ren R, Yang H, Fortune B, Burgoyne CF, Demirel S (2014) A method to estimate the amount of neuroretinal rim tissue in glaucoma: comparison with current methods for measuring rim area. Am J Ophthalmol 157(3):540–549-e541–542. https://doi.org/10.1016/j.ajo.2013.11.007

    Article  Google Scholar 

  16. Enders P, Adler W, Kiessling D, Weber V, Schaub F, Hermann MM, Dietlein T, Cursiefen C, Heindl LM (2019) Evaluation of two-dimensional Bruch’s membrane opening minimum rim area for glaucoma diagnostics in a large patient cohort. Acta Ophthalmol 97(1):60–67. https://doi.org/10.1111/aos.13698

    Article  PubMed  Google Scholar 

  17. Resch H, Mitsch C, Pereira I, Schwarzhans F, Wasserman L, Hommer A, Reitner A, Vass C (2018) Optic nerve head morphology in primary open-angle glaucoma and nonarteritic anterior ischaemic optic neuropathy measured with spectral domain optical coherence tomography. Acta Ophthalmol 96(8):e1018–e1024. https://doi.org/10.1111/aos.13804

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Lee EJ, Han JC, Park DY, Kee C (2019) Difference in topographic pattern of prelaminar and neuroretinal rim thinning between nonarteritic anterior ischemic optic neuropathy and glaucoma. Invest Ophthalmol Vis Sci 60(7):2461–2467. https://doi.org/10.1167/iovs.19-26891

    Article  PubMed  Google Scholar 

  19. Lee EJ, Choi YJ, Kim TW, Hwang JM (2016) Comparison of the deep optic nerve head structure between normal-tension glaucoma and nonarteritic anterior ischemic optic neuropathy. PLoS ONE 11(4):e0150242. https://doi.org/10.1371/journal.pone.0150242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Perez-Sarriegui A, Munoz-Negrete FJ, Noval S, De Juan V, Rebolleda G (2018) Automated evaluation of choroidal thickness and minimum rim width thickness in nonarteritic anterior ischemic optic neuropathy. J Neuroophthalmol 38(1):7–12. https://doi.org/10.1097/WNO.0000000000000571

    Article  PubMed  Google Scholar 

  21. Rebolleda G, García-Montesinos J, De Dompablo E, Oblanca N, Muñoz-Negrete FJ, González-López JJ (2017) Bruch’s membrane opening changes and lamina cribrosa displacement in non-arteritic anterior ischaemic optic neuropathy. Br J Ophthalmol 101(2):143–149. https://doi.org/10.1136/bjophthalmol-2015-307945

    Article  PubMed  Google Scholar 

  22. Chan CK, Cheng AC, Leung CK, Cheung CY, Yung AY, Gong B, Lam DS (2009) Quantitative assessment of optic nerve head morphology and retinal nerve fibre layer in non-arteritic anterior ischaemic optic neuropathy with optical coherence tomography and confocal scanning laser ophthalmoloscopy. Br J Ophthalmol 93(6):731–735. https://doi.org/10.1136/bjo.2008.143297

    Article  PubMed  CAS  Google Scholar 

  23. Strahlman ER, Quinlan PM, Enger C, Elman MJ (1989) The cup-to-disc ratio and central retinal vein occlusion. Archives of ophthalmology (Chicago, Ill : 1960) 107(4):524–525. https://doi.org/10.1001/archopht.1989.01070010538026

    Article  CAS  Google Scholar 

  24. Wanichwecharungruang B, Jaksataphorn P, Yuttitham K, Vanichvaranont S, Harncharoen K (2011) Optic disc area and diameter of the central retinal vein occlusion fellow eyes, determined by optical coherence tomography. J Med Ass Thai = Chotmaihet thangphaet 94(Suppl 2):S76-80

    Google Scholar 

  25. Ravalico G, BattagliaParodi M (1991) Cup/disk ratio in branch retinal vein occlusion. Ophthalmologica 203(2):53–56. https://doi.org/10.1159/000310226

    Article  PubMed  CAS  Google Scholar 

  26. Chen MJ (2020) Normal tension glaucoma in Asia: epidemiology, pathogenesis, diagnosis, and management. Taiwan J Ophthalmol 10:250–254. https://doi.org/10.4103/tjo.tjo_30_20

    Article  PubMed  PubMed Central  Google Scholar 

  27. Killer HE, Pircher A (2018) Normal tension glaucoma: review of current understanding and mechanisms of the pathogenesis. Eye (Lond) 32:924–930. https://doi.org/10.1038/s41433-018-0042-2

    Article  CAS  Google Scholar 

  28. Patel N, McAllister F, Pardon L, Harwerth R (2018) The effects of graded intraocular pressure challenge on the optic nerve head. Exp Eye Res 169:79–90. https://doi.org/10.1016/j.exer.2018.01.025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Study design: K.I.N., P.S.P.

Collection, management, analysis, and interpretation of the data: Y.A., K.I.N.

Preparation of manuscript: Y.A., K.I.N.

Review and approval of manuscript: all.

Corresponding authors

Correspondence to Sung Pyo Park or Kyeong Ik Na.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

Author P.S.P. was supported by the Korean Association of Retinal Degeneration.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Sung Pyo Park and Kyeong Ik Na contributed equally as corresponding authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Y., Park, S.P. & Na, K.I. Novel area-based optic nerve head parameter to distinguish glaucoma from non-glaucomatous retinal nerve fiber layer defect in branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol 260, 235–246 (2022). https://doi.org/10.1007/s00417-021-05341-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-021-05341-7

Keywords

Navigation