Skip to main content

Advertisement

Log in

Retinal and choroidal thickness measurements in obstructive sleep apnea: impacts of continuous positive airway pressure treatment

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To examine retinal and choroidal thicknesses in individuals with obstructive sleep apnea (OSA) and determine the impacts of continuous positive airway pressure (CPAP) treatment.

Methods

Prospective follow-up study conducted at a university hospital. 40 patients with OSA, 28 treated with CPAP, and 12 untreated, were enrolled immediately after diagnosis and graded according to the apnea hypopnea index (AHI) determined in an overnight polysomnography. Inclusion criteria were a new diagnosis of OSA and CPAP indicated. Participants underwent a full ophthalmologic examination including optical coherence tomography (OCT) at the peripapillary, macular, and choroidal levels and the same examination 3 months later. Outcome measures were peripapillary retinal nerve fiber layer (RNFL), total retinal (TRT), retinal ganglion cell layer (RGCL), inner plexiform layer (IPL), photoreceptor layer (PL), and choroidal thicknesses.

Results

At 3 months, RGCL thickness was reduced at the inner nasal macula segment in the no-CPAP group (P = 0.016). In + CPAP, increases were produced in RNFL thickness (5/6 segments) and TRT (7/ 9 segments), while choroidal thinning was observed temporally (P = 0.003). At baseline, positive correlation was detected between choroidal thickness and AHI (r = 0.352, P = 0.005) and between IPL thickness (7/9 segments) and AHI (r = 0.414, P < 0.001).

Conclusions

Initial retinal and choroidal thickening was followed by RGCL thinning over 3 months. In patients receiving CPAP, we observed no thinning of any retinal layer and normalization of choroidal thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AHI:

Apnea hypopnea index

ART:

Automatic real time

CPAP:

Continuous positive airway pressure

EDI:

Enhanced depth imaging

F:

Fovea

G:

Global

ICC:

Intraclass correlation coefficient

IIM:

Inferior inner macula

IN:

Infereronasal

IOM:

Inferior outer macula

IOP:

Intraocular pressure

IPL:

Inner plexiform layer

IT:

Inferotemporal

N:

Nasal

NIM:

Nasal inner macula

NOM:

Nasal outer macula

OSA:

Obstructive sleep apnea

PL:

Photoreceptor layer

RGCL:

Retinal ganglion cell layer

RNFL:

Retinal nerve fiber layer

SIM:

Superior inner macula

SN:

Superonasal

SOM:

Superior outer macula

SpO2 :

Peripheral oxygen saturation

ST :

Superotemporal

T :

Temporal

TIM :

Temporal inner macula

TOM :

Temporal outer macula

TRT :

Total retinal thickness

References

  1. Young T, Peppard PE, Gottlieb DJ (2002) Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med 165:1217–1239

    Article  Google Scholar 

  2. Jurado-Gamez B, Fernandez-Marin MC, Gomez-Chaparro JL, Munoz-Cabrera L, Lopez-Barea J, Perez-Jimenez F, Lopez-Miranda J (2011) Relationship of oxidative stress and endothelial dysfunction in sleep apnoea. Eur Respir J 37:873–879

    Article  CAS  Google Scholar 

  3. Kur J, Newman EA, Chan-Ling T (2012) Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog Retin Eye Res 31:377–406

    Article  CAS  Google Scholar 

  4. Papst N, Demant E, Niemeyer G (1982) Changes in pO2 induce retinal autoregulation in vitro. Graefes Arch Clin Exp Ophthalmol 219:6–10

    Article  CAS  Google Scholar 

  5. Nickla DL, Wallman J (2010) The multifunctional choroid. Prog Retin Eye Res 29:144–168

    Article  Google Scholar 

  6. Wu CY, Riangwiwat T, Rattanawong P, Nesmith BLW, Deobhakta A (2018) Association of obstructive sleep apnea with central serous chorioretinopathy and choroidal thickness: a systematic review and meta-analysis. Retina 38:1642–1651

    Article  Google Scholar 

  7. He M, Han X, Wu H, Huang W (2016) Choroidal thickness changes in obstructive sleep apnea syndrome: a systematic review and meta-analysis. Sleep Breath 20:369–378

    Article  Google Scholar 

  8. Shiba T, Takahashi M, Sato Y, Onoda Y, Hori Y, Sugiyama T, Bujo H, Maeno T (2014) Relationship between severity of obstructive sleep apnea syndrome and retinal nerve fiber layer thickness. Am J Ophthalmol 157:1202–1208

    Article  Google Scholar 

  9. Moyal L, Blumen-Ohana E, Blumen M, Blatrix C, Chabolle F, Nordmann JP (2018) Parafoveal and optic disc vessel density in patients with obstructive sleep apnea syndrome: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol 256:1235–1243

    Article  CAS  Google Scholar 

  10. Zengin MO, Tuncer I, Karahan E (2014) Retinal nerve fiber layer thickness changes in obstructive sleep apnea syndrome: one year follow-up results. Int J Ophthalmol 7:704–708

    PubMed  PubMed Central  Google Scholar 

  11. Hashim SP, Al Mansouri FA, Farouk M, Al Hashemi AA, Singh R (2014) Prevalence of glaucoma in patients with moderate to severe obstructive sleep apnea: ocular morbidity and outcomes in a 3 year follow-up study. Eye 28:1304–1309

    Article  CAS  Google Scholar 

  12. Abdullayev A, Tekeli O, Yanik O, Acican T, Gulbay B (2019) Investigation of the presence of glaucoma in patients with obstructive sleep apnea syndrome using and not using continuous positive airway pressure treatment. Turk J Ophthalmol 49:134–141

    Article  Google Scholar 

  13. Ferrandez B, Ferreras A, Calvo P, Abadia B, Fogagnolo P, Wang Y, Marin JM, Iester M (2014) Retinal sensitivity is reduced in patients with obstructive sleep apnea. Invest Ophthalmol Vis 55:7119–7125

    Article  Google Scholar 

  14. Lloberes P, Duran-Cantolla J, Martinez-Garcia MA, Marin JM, Ferrer A, Corral J, Masa JF, Parra O, Alonso-Alvarez ML, Teran-Santos J (2011) Diagnosis and treatment of sleep apnea-hypopnea syndrome. Spanish Society of Pulmonology and Thoracic Surgery. Arch Bronconeumol 47:143–156

    PubMed  Google Scholar 

  15. Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, Marcus CL, Mehra R, Parthasarathy S, Quan SF, Redline S, Strohl KP, Davidson Ward SL, Tangredi MM, Academy A, of Sleep M, (2012) Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the sleep apnea definitions Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med 8:597–619

    Article  Google Scholar 

  16. Jurado-Gamez B, Bardwell WA, Cordova-Pacheco LJ, Garcia-Amores M, Feu-Collado N, Buela-Casal G (2015) A basic intervention improves CPAP adherence in sleep apnoea patients: a controlled trial. Sleep Breath 19:509–514

    Article  CAS  Google Scholar 

  17. Lin PW, Friedman M, Lin HC, Chang HW, Pulver TM, Chin CH (2011) Decreased retinal nerve fiber layer thickness in patients with obstructive sleep apnea/hypopnea syndrome. Graefes Arch Clin Exp Ophthalmol 249:585–593

    Article  Google Scholar 

  18. Wang JS, Xie HT, Jia Y, Zhang MC (2016) Retinal nerve fiber layer thickness changes in obstructive sleep apnea syndrome: a systematic review and meta-analysis. Int J Ophthalmol 9:1651–1656

    PubMed  PubMed Central  Google Scholar 

  19. Casas P, Ascaso FJ, Vicente E, Tejero-Garces G, Adiego MI, Cristobal JA (2013) Retinal and optic nerve evaluation by optical coherence tomography in adults with obstructive sleep apnea-hypopnea syndrome (OSAHS). Graefes Arch Clin Exp Ophthalmol 251:1625–1634

    Article  Google Scholar 

  20. Hayreh SS, Zimmerman MB, Podhajsky P, Alward WL (1994) Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders. Am J Ophthalmol 117:603–624

    Article  CAS  Google Scholar 

  21. Bekkers A, Borren N, Ederveen V, Fokkinga E, Andrade De Jesus D, Sanchez Brea L, Klein S, van Walsum T, Barbosa-Breda J, Stalmans I (2020) Microvascular damage assessed by optical coherence tomography angiography for glaucoma diagnosis: a systematic review of the most discriminative regions. Acta Ophthalmol

  22. Lin PW, Lin HC, Friedman M, Chang HW, Salapatas AM, Lin MC, Chen YC (2020) Effects of CPAP for patients with OSA on visual sensitivity and retinal thickness. Sleep Med 67:156–163

    Article  Google Scholar 

  23. Lattimore JD, Celermajer DS, Wilcox I (2003) Obstructive sleep apnea and cardiovascular disease. J Am Coll Cardiol 41:1429–1437

    Article  Google Scholar 

  24. Yu J, Gu R, Zong Y, Xu H, X W, (2016) Relationship between retinal perfusion and retinal thickness in healthy subjects: an optical coherence tomography angiography study. Invest Ophthalmol Vis Sci 57(9):204–210

    Article  Google Scholar 

  25. Ucak T, Unver E (2020) Alterations in parafoveal and optic disc vessel densities in patients with obstructive sleep apnea syndrome. J Ophthalmol 2020:4034382

    Article  Google Scholar 

  26. Yu J, Xiao K, Huang J, Sun X, Jiang C (2017) Reduced retinal vessel density in obstructive sleep apnea syndrome patients: an optical coherence tomography angiography study. Invest Ophthalmol Vis Sci 58:3506–3512

    Article  Google Scholar 

  27. Jurado-Gamez B, Bujalance Cabrera C, Caballero Ballesteros L, Marin Hinojosa C, Munoz Cabrera L, Perez-Jimenez F, Lopez-Miranda J (2012) Association of cellular adhesion molecules and oxidative stress with endothelial function in obstructive sleep apnea. Intern Med 51:363–368

    Article  Google Scholar 

  28. Kergoat H, Herard ME, Lemay M (2006) RGC sensitivity to mild systemic hypoxia. Invest Ophthalmol Vis Sci 47:5423–5427

    Article  Google Scholar 

  29. Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD (2000) A novel human opsin in the inner retina. J Neurosci 20:600–605

    Article  CAS  Google Scholar 

  30. Butler MP, Smales C, Wu H, Hussain MV, Mohamed YA, Morimoto M, Shea SA (2015) The circadian system contributes to apnea lengthening across the night in obstructive sleep apnea. Sleep 38:1793–1801

    Article  Google Scholar 

  31. van de Kreeke JA, Darma S, Chan Pin Yin J, Tan HS, Abramoff MD, Twisk JWR, Verbraak FD (2020) The spatial relation of diabetic retinal neurodegeneration with diabetic retinopathy. PloS one 15:e0231552

    Article  Google Scholar 

  32. Sivaprasad S, Arden G (2016) Spare the rods and spoil the retina: revisited. Eye 30:189–192

    Article  CAS  Google Scholar 

  33. Duque-Chica GL, Gracitelli CPB, Moura ALA, Nagy BV, Vidal KS, de Melo G, Paranhos A Jr, Cahali MB, Ventura DF (2019) Contributions of the melanopsin-expressing ganglion cells, cones, and rods to the pupillary light response in obstructive sleep apnea. Invest Ophthalmol Vis Sci 60:3002–3012

    Article  CAS  Google Scholar 

  34. Schaal S, Sherman MP, Nesmith B, Barak Y (2016) Untreated obstructive sleep apnea hinders response to bevacizumab in age-related macular degeneration. Retina 36:791–797

    Article  CAS  Google Scholar 

  35. Lee AG, Golnik K, Kardon R, Wall M, Eggenberger E, Yedavally S (2002) Sleep apnea and intracranial hypertension in men. Ophthalmology 109:482–485

    Article  Google Scholar 

  36. Erdem CZ, Altin R, Erdem LO, Kargi S, Kart L, Cinar F, Ayoglu F (2003) Doppler measurement of blood flow velocities in extraocular orbital vessels in patients with obstructive sleep apnea syndrome. J Clin Ultrasound 31:250–257

    Article  Google Scholar 

  37. Fuchsjager-Mayrl G, Luksch A, Malec M, Polska E, Wolzt M, Schmetterer L (2003) Role of endothelin-1 in choroidal blood flow regulation during isometric exercise in healthy humans. Invest Ophthalmol Vis Sci 44:728–733

    Article  Google Scholar 

  38. Wildsoet C, Wallman J (1995) Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks. Vision Res 35:1175–1194

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study, conception, and design. Material preparation, data collection, and analysis were performed by Naranjo-Bonilla P., Muñoz-Villanueva María C., Giménez-Gómez R., and Jurado-Gámez B.. The first draft of the manuscript was written by Naranjo-Bonilla P., Muñoz-Villanueva María C., and Jurado-Gámez B., and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

This article does not contain any studies with human participants or animals performed by any of the authors.

Corresponding author

Correspondence to P. Naranjo-Bonilla.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naranjo-Bonilla, P., Muñoz-Villanueva, M.C., Giménez-Gómez, R. et al. Retinal and choroidal thickness measurements in obstructive sleep apnea: impacts of continuous positive airway pressure treatment. Graefes Arch Clin Exp Ophthalmol 259, 3381–3393 (2021). https://doi.org/10.1007/s00417-021-05322-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-021-05322-w

Keywords

Navigation