Skip to main content

Advertisement

Log in

Accuracy of intraocular lens power calculation in primary angle-closure disease: comparison of 7 formulas

  • Cataract
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To assess the accuracy of intraocular lens power calculation formulas Barrett Universal II (BUII), Hill-Radial Basis Function (RBF) 3.0, Kane, Ladas Super Formula (LSF), Haigis, Hoffer Q, and SRK/T in primary angle-closure disease (PACD).

Methods

A total of 129 PACD eyes were enrolled. Prediction refraction was calculated for each formula and compared with actual refraction. Accuracy was determined by formula performance index (FPI), median absolute error (MedAE) and percentage of eyes with a prediction error (PE) within ± 0.50D. Subgroup analysis was performed according to axial length (AL).

Results

Overall, FPI was ranked as follows: Kane (0.067), RBF 3.0 (0.064), Haigis (0.062), SRK/T (0.060), BUII (0.058), Hoffer Q (0.055), and LSF (0.049). Kane got the highest (71.3%) percentage of eyes with PE within ± 0.50 D. In medium AL eyes (22 mm < AL ≤ 25 mm), FPI ranked the same as in total group. MedAEs were equal across all formulas (P = 0.121). In short eyes (AL ≤ 22 mm), FPI was Kane (0.055), RBF 3.0 (0.050), SRK/T (0.050), Haigis (0.049), BUII (0.047), Hoffer Q (0.045), and LSF (0.033). MedAEs were significantly different across all formulas (P = 0.033). Haigis showed the lowest MedAE (0.35 D), Haigis and Kane got the highest percentage (63.6%) of eyes with PE within ± 0.50 D.

Conclusion

Kane outperformed in total PACD eyes; RBF 3.0, Haigis, and SRK/T achieved satisfying performance. When dealing with PACD eyes shorter than 22 mm, Kane achieved the best accuracy. RBF 3.0, SRK/T, Haigis, and BUII achieved comparable outcomes. No formula showed superiority over others for medium AL PACD eyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. Hayashi K, Hayashi H, Nakao F, Hayashi F (2001) Effect of cataract surgery on intraocular pressure control in glaucoma patients. J Cataract Refract Surg 27:1779–1786. https://doi.org/10.1016/s0886-3350(01)01036-7

    Article  CAS  PubMed  Google Scholar 

  2. Shams PN, Foster PJ (2012) Clinical outcomes after lens extraction for visually significant cataract in eyes with primary angle closure. J Glaucoma 21:545–550. https://doi.org/10.1097/IJG.0b013e31821db1db

    Article  PubMed  Google Scholar 

  3. Friedman DS, Jampel HD, Lubomski LH et al (2002) Surgical strategies for coexisting glaucoma and cataract: an evidence-based update. Ophthalmology 109:1902–1913. https://doi.org/10.1016/s0161-6420(02)01267-8

    Article  PubMed  Google Scholar 

  4. Hayashi K, Hayashi H, Nakao F, Hayashi F (2000) Changes in anterior chamber angle width and depth after intraocular lens implantation in eyes with glaucoma. Ophthalmology 107:698–703. https://doi.org/10.1016/S0161-6420(00)00007-5

    Article  CAS  PubMed  Google Scholar 

  5. Lai JS, Tham CC, Chan JC (2006) The clinical outcomes of cataract extraction by phacoemulsification in eyes with primary angle-closure glaucoma (PACG) and co-existing cataract: a prospective case series. J Glaucoma 15:47–52. https://doi.org/10.1097/01.ijg.0000196619.34368.0a

    Article  PubMed  Google Scholar 

  6. Bo J, Changulani T, Cheng ML, Tatham AJ (2018) Outcome Following Laser Peripheral Iridotomy and Predictors of Future Lens Extraction. J Glaucoma 27:275–280. https://doi.org/10.1097/IJG.0000000000000863

    Article  PubMed  Google Scholar 

  7. Weinreb RN, Aung T, Medeiros FA (2014) The pathophysiology and treatment of glaucoma: a review. JAMA 311:1901–1911. https://doi.org/10.1001/jama.2014.3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nongpiur ME, Ku JY, Aung T (2011) Angle closure glaucoma: a mechanistic review. Curr Opin Ophthalmol 22:96–101. https://doi.org/10.1097/ICU.0b013e32834372b9

    Article  PubMed  Google Scholar 

  9. Olsen T (2007) Calculation of intraocular lens power: a review. Acta Ophthalmol Scand 85:472–485. https://doi.org/10.1111/j.1600-0420.2007.00879.x

    Article  PubMed  Google Scholar 

  10. Jung KI, Yang JW, Lee YC, Kim SY (2012) Cataract surgery in eyes with nanophthalmos and relative anterior microphthalmos. Am J Ophthalmol 153(1161–1168):e1161. https://doi.org/10.1016/j.ajo.2011.12.006

    Article  Google Scholar 

  11. Day AC, MacLaren RE, Bunce C, Stevens JD, Foster PJ (2013) Outcomes of phacoemulsification and intraocular lens implantation in microphthalmos and nanophthalmos. J Cataract Refract Surg 39:87–96. https://doi.org/10.1016/j.jcrs.2012.08.057

    Article  PubMed  Google Scholar 

  12. Hoffer KJ, Savini G (2017) IOL power calculation in short and long eyes. Asia Pac J Ophthalmol (Phila) 6:330–331. https://doi.org/10.22608/APO.2017338

    Article  Google Scholar 

  13. Olsen T, Thim K, Corydon L (1991) Accuracy of the newer generation intraocular lens power calculation formulas in long and short eyes. J Cataract Refract Surg 17:187–193. https://doi.org/10.1016/s0886-3350(13)80249-0

    Article  CAS  PubMed  Google Scholar 

  14. Tan HY, Wu SC (2004) Refractive error with optimum intraocular lens power calculation after glaucoma filtering surgery. J Cataract Refr Surg 30:2595–2597. https://doi.org/10.1016/j.jcrs.2004.05.016

    Article  Google Scholar 

  15. Muallem MS, Nelson GA, Osmanovic S, Quinones R, Viana M, Edward DP (2009) Predicted refraction versus refraction outcome in cataract surgery after trabeculectomy. J Glaucoma 18:284–287. https://doi.org/10.1097/IJG.0b013e318184567b

    Article  PubMed  PubMed Central  Google Scholar 

  16. Manoharan N, Patnaik JL, Bonnell LN et al (2018) Refractive outcomes of phacoemulsification cataract surgery in glaucoma patients. J Cataract Refract Surg 44:348–354. https://doi.org/10.1016/j.jcrs.2017.12.024

    Article  PubMed  Google Scholar 

  17. Barrett GD (1993) An improved universal theoretical formula for intraocular lens power prediction. J Cataract Refract Surg 19:713–720. https://doi.org/10.1016/s0886-3350(13)80339-2

    Article  CAS  PubMed  Google Scholar 

  18. Connell BJ, Kane JX (2019) Comparison of the Kane formula with existing formulas for intraocular lens power selection. BMJ Open Ophthalmol 4ARTN e000251 https://doi.org/10.1136/bmjophth-2018-000251

  19. Ladas JG, Siddiqui AA, Devgan U, Jun AS (2015) A 3-D “Super surface” combining modern intraocular lens formulas to generate a “super formula” and maximize accuracy. JAMA Ophthalmol 133:1431–1436. https://doi.org/10.1001/jamaophthalmol.2015.3832

    Article  PubMed  Google Scholar 

  20. Haigis W, Lege B, Miller N, Schneider B (2000) Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis. Graefes Arch Clin Exp Ophthalmol 238:765–773. https://doi.org/10.1007/s004170000188

    Article  CAS  PubMed  Google Scholar 

  21. Hoffer KJ (1993) The Hoffer Q formula: a comparison of theoretic and regression formulas. J Cataract Refract Surg 19:700–712. https://doi.org/10.1016/s0886-3350(13)80338-0

    Article  CAS  PubMed  Google Scholar 

  22. Retzlaff JA, Sanders DR, Kraff MC (1990) Development of the SRK/T intraocular lens implant power calculation formula. J Cataract Refract Surg 16:333–340. https://doi.org/10.1016/s0886-3350(13)80705-5

    Article  CAS  PubMed  Google Scholar 

  23. Foster PJ, Buhrmann R, Quigley HA, Johnson GJ (2002) The definition and classification of glaucoma in prevalence surveys. Br J Ophthalmol 86:238–242. https://doi.org/10.1136/bjo.86.2.238

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hoffer KJ, Aramberri J, Haigis W et al (2015) Protocols for studies of intraocular lens formula accuracy. Am J Ophthalmol 160:403–405. https://doi.org/10.1016/j.ajo.2015.05.029

    Article  PubMed  Google Scholar 

  25. Hoffer KJ, Savini G (2020) Update on intraocular lens power calculation study protocols: the better way to design and report clinical trials. Ophthalmology. https://doi.org/10.1016/j.ophtha.2020.07.005

    Article  PubMed  Google Scholar 

  26. Lam DS, Leung DY, Tham CC et al (2008) Randomized trial of early phacoemulsification versus peripheral iridotomy to prevent intraocular pressure rise after acute primary angle closure. Ophthalmology 115:1134–1140. https://doi.org/10.1016/j.ophtha.2007.10.033

    Article  PubMed  Google Scholar 

  27. Moghimi S, Chen R, Johari M et al (2016) Changes in anterior segment morphology after laser peripheral iridotomy in acute primary angle closure. Am J Ophthalmol 166:133–140. https://doi.org/10.1016/j.ajo.2016.03.032

    Article  PubMed  Google Scholar 

  28. Gazzard G, Friedman DS, Devereux JG, Chew P, Seah SKL (2003) A prospective ultrasound biomicroscopy evaluation of changes in anterior segment morphology after laser iridotomy in Asian eyes. Ophthalmology 110:630–638. https://doi.org/10.1016/S0161-6420(02)01893-6

    Article  PubMed  Google Scholar 

  29. Kashiwagi K, Abe K, Tsukahara S (2004) Quantitative evaluation of changes in anterior segment biometry by peripheral laser iridotomy using newly developed scanning peripheral anterior chamber depth analyser. Brit J Ophthalmol 88:1036–1041. https://doi.org/10.1136/bjo.2003.036715

    Article  CAS  Google Scholar 

  30. Husain R, Li W, Gazzard G et al (2013) Longitudinal changes in anterior chamber depth and axial length in Asian subjects after trabeculectomy surgery. Br J Ophthalmol 97:852–856. https://doi.org/10.1136/bjophthalmol-2012-302442

    Article  PubMed  Google Scholar 

  31. Mokbel TH, Elhesy AE, Alnagdy A et al (2020) Pentacam changes in primary angle-closure glaucoma after different lines of treatment. Int J Ophthalmol-Chi 13:591–598. https://doi.org/10.18240/ijo.2020.04.10

    Article  Google Scholar 

  32. Rhiu S, Lee ES, Kim TI, Lee HS, Kim CY (2012) Power prediction for one-piece and three-piece intraocular lens implantation after cataract surgery in patients with chronic angle-closure glaucoma: a prospective, randomized clinical trial. Acta Ophthalmol 90:e580–e585. https://doi.org/10.1111/j.1755-3768.2012.02499.x

    Article  PubMed  Google Scholar 

  33. Eom Y, Kang SY, Song JS, Kim YY, Kim HM (2014) Comparison of Hoffer Q and Haigis formulae for intraocular lens power calculation according to the anterior chamber depth in short eyes. Am J Ophthalmol 157(818–824):e812. https://doi.org/10.1016/j.ajo.2013.12.017

    Article  Google Scholar 

  34. Gokce SE, Montes De Oca I, Cooke DL, Wang L, Koch DD, Al-Mohtaseb Z (2018) Accuracy of 8 intraocular lens calculation formulas in relation to anterior chamber depth in patients with normal axial lengths. J Cataract Refract Surg 44:362–368. https://doi.org/10.1016/j.jcrs.2018.01.015

    Article  PubMed  Google Scholar 

  35. Hipolito-Fernandes D, Luis ME, Serras-Pereira R et al (2020) Anterior chamber depth, lens thickness and intraocular lens calculation formula accuracy: nine formulas comparison. Br J Ophthalmol. https://doi.org/10.1136/bjophthalmol-2020-317822

    Article  PubMed  Google Scholar 

  36. Gokce SE, Zeiter JH, Weikert MP, Koch DD, Hill W, Wang L (2017) Intraocular lens power calculations in short eyes using 7 formulas. J Cataract Refr Surg 43:892–897. https://doi.org/10.1016/j.jcrs.2017.07.004

    Article  Google Scholar 

  37. Day AC, Foster PJ, Stevens JD (2012) Accuracy of intraocular lens power calculations in eyes with axial length < 22.00 mm. Clin Exp Ophthalmol 40:855–862. https://doi.org/10.1111/j.1442-9071.2012.02810.x

    Article  PubMed  Google Scholar 

  38. Kane JX, Van Heerden A, Atik A, Petsoglou C (2016) Intraocular lens power formula accuracy: Comparison of 7 formulas. J Cataract Refract Surg 42:1490–1500. https://doi.org/10.1016/j.jcrs.2016.07.021

    Article  PubMed  Google Scholar 

  39. Shrivastava AK, Behera P, Kumar B, Nanda S (2018) Precision of intraocular lens power cheek for prediction in eyes shorter than 22 mm: An analysis of 6 formulas. J Cataract Refr Surg 44:1317–1320. https://doi.org/10.1016/j.jcrs.2018.07.023

    Article  Google Scholar 

  40. Yang S, Whang WJ, Joo CK (2017) Effect of anterior chamber depth on the choice of intraocular lens calculation formula. PLoS One 12:e0189868. https://doi.org/10.1371/journal.pone.0189868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kane JX, Van Heerden A, Atik A, Petsoglou C (2017) Accuracy of 3 new methods for intraocular lens power selection. J Cataract Refract Surg 43:333–339. https://doi.org/10.1016/j.jcrs.2016.12.021

    Article  PubMed  Google Scholar 

  42. Szalai E, Toth N, Kolkedi Z, Varga C, Csutak A (2020) Comparison of various intraocular lens formulas using a new high-resolution swept-source optical coherence tomographer. J Cataract Refr Surg 46:1138–1141. https://doi.org/10.1097/j.jcrs.0000000000000329

    Article  Google Scholar 

  43. Savini G, Abbate R, Hoffer KJ et al (2019) Intraocular lens power calculation in eyes with keratoconus. J Cataract Refract Surg 45:576–581. https://doi.org/10.1016/j.jcrs.2018.11.029

  44. Kane JX, Connell B, Yip H et al (2020) Accuracy of Intraocular Lens Power Formulas Modified for Patients with Keratoconus. Ophthalmology 127:1037–1042. https://doi.org/10.1016/j.ophtha.2020.02.008

  45. Hoffer KJ (2000) Clinical results using the Holladay 2 intraocular lens power formula. J Cataract Refr Surg 26:1233–1237. https://doi.org/10.1016/S0886-3350(00)00376-X

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by a grant from the National Key Research and Development Program of China (No. 2017YFC1104603).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Min Hou and Yujie Ding. The first draft of the manuscript was written by Min Hou, and all authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mingxing Wu.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This retrospective study was approved by the Institutional Review Board of Zhongshan Ophthalmic Center, Sun Yat-Sen University (No.2019KYPJ124).

Consent for publication

The participant has consented to the submission of case report to the journal.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Other cited materials

A. RBF 3.0: Hill Radial Basis Function calculator version 3.0. Available at: http://rbfcalculator.com/online/index.html. Accessed on January 17th 2021.

B. BUII: Barrett Universal II formula. Available at: http://calc.apacrs.org/barrett_universal2105/. Accessed on January 3th, 2021.

C. Kane JX. Kane formula. Available at: www.iolformula.com. Accessed on January 3th 2021.

D. LSF: Ladas super formula. Available at: https://www.iolcalc.com/home. Accessed on January 3th 2021.

E. ULIB: User Group for Laser Interference Biometry. Available at: http://ocusoft.de/ulib. Accessed on January 3th 2021.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2447 KB)

Supplementary file2 (DOCX 29.6 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, M., Ding, Y., Liu, L. et al. Accuracy of intraocular lens power calculation in primary angle-closure disease: comparison of 7 formulas. Graefes Arch Clin Exp Ophthalmol 259, 3739–3747 (2021). https://doi.org/10.1007/s00417-021-05295-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-021-05295-w

Keywords

Navigation