Skip to main content

Decreased risk of non-infectious anterior uveitis with statin therapy in a large healthcare claims database

Abstract

Purpose

The purpose of this study is to determine if statin therapy decreases the incidence of non-infectious uveitis (NIU) using a retrospective cohort study.

Methods

Patients enrolled in a national insurance plan who initiated statin (n = 711,734, statin cohort) or other lipid-lowering therapy (n = 148,044, non-statin cohort) were observed for NIU development. Incident NIU in the primary analysis was defined as a new diagnosis code for NIU followed by a second instance of a NIU code within 120 days. For the secondary outcome definition, a corticosteroid prescription or code for an ocular corticosteroid injection within 120 days of the NIU diagnosis code was used instead of the second NIU diagnosis code. Estimation of NIU incidence used multivariable Cox proportional hazards regression. The proportional hazards assumption was satisfied by creating two time periods of analysis, ≤ 150 and > 150 days. Subanalyses were performed by anatomic subtype.

Results

Overall, the primary outcome occurred 541 times over 690,465 person-years in the statin cohort and 103 times over 104,301 person-years in the non-statin cohort. No associations were seen in the ≤ 150-day analyses (p > 0.20 for all comparisons). However, after 150 days, the statin cohort was less likely to develop any uveitis [hazard ratio (HR) = 0.70, 95% confidence interval (CI): 0.51–0.97, P = 0.03] in the primary outcome analysis, but did not meet significance for the secondary outcome (HR = 0.85, 95% CI: 0.63–1.15, P = 0.30). Similarly, in the anatomic subtype analysis, after 150 days, the statin cohort was less likely to develop anterior uveitis (HR = 0.67, 95% CI: 0.47–0.97, P = 0.03) in the primary analysis, but the association did not reach significance for the secondary outcome (HR = 0.82, 95% CI: 0.56–1.20, P = 0.31).

Conclusion

Our results suggest that statin therapy for > 150 days decreases the incidence of NIU.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data availability

The data that support the findings of this study are available from the authors, LS and BLV, upon reasonable request.

Code availability

The data that support the findings of this study are available from the authors, LS and BLV, upon reasonable request.

References

  1. Suttorp-Schulten MS, Rothova A (1996) The possible impact of uveitis in blindness: a literature survey. Br J Ophthalmol 80(9):844–848

    CAS  Article  Google Scholar 

  2. Tsirouki T, Dastiridou A, Symeonidis C, Tounakaki O, Brazitikou I, Kalogeropoulos C, Androudi S (2018) A focus on the epidemiology of uveitis. Ocul Immunol Inflamm 26(1):2–16. https://doi.org/10.1080/09273948.2016.1196713

    Article  PubMed  Google Scholar 

  3. Gritz DC, Wong IG (2004) Incidence and prevalence of uveitis in Northern California; the Northern California Epidemiology of Uveitis Study. Ophthalmology 111(3):491–500. https://doi.org/10.1016/j.ophtha.2003.06.014

    Article  PubMed  Google Scholar 

  4. Darrell RW, Wagener HP, Kurland LT (1962) Epidemiology of uveitis. Incidence and prevalence in a small urban community. Arch Ophthalmol 68:502–514

    CAS  Article  Google Scholar 

  5. Acharya NR, Tham VM, Esterberg E, Borkar DS, Parker JV, Vinoya AC, Uchida A (2013) Incidence and prevalence of uveitis: results from the Pacific Ocular Inflammation Study. JAMA ophthalmology 131(11):1405–1412. https://doi.org/10.1001/jamaophthalmol.2013.4237

    Article  PubMed  Google Scholar 

  6. Suhler EB, Lloyd MJ, Choi D, Rosenbaum JT, Austin DF (2008) Incidence and prevalence of uveitis in Veterans Affairs Medical Centers of the Pacific Northwest. Am J Ophthalmol 146(6):890–896. https://doi.org/10.1016/j.ajo.2008.09.014 (e898)

    Article  PubMed  Google Scholar 

  7. Khattri S, Zandman-Goddard G (2013) Statins and autoimmunity. Immunol Res 56(2–3):348–357. https://doi.org/10.1007/s12026-013-8409-8

    CAS  Article  PubMed  Google Scholar 

  8. Borkar DS, Tham VM, Shen E, Parker JV, Uchida A, Vinoya AC, Acharya NR (2015) Association between statin use and uveitis: results from the Pacific Ocular Inflammation study. Am J Ophthalmol 159(4):707–713. https://doi.org/10.1016/j.ajo.2015.01.009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Yunker JJ, McGwin G Jr, Read RW (2013) Statin use and ocular inflammatory disease risk. J Ophthalmic Inflamm Infect 3(1):8. https://doi.org/10.1186/1869-5760-3-8

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shirinsky IV, Biryukova AA, Shirinsky VS (2017) Simvastatin as an adjunct to conventional therapy of non-infectious uveitis: a randomized, open-label pilot study. Curr Eye Res 42(12):1713–1718. https://doi.org/10.1080/02713683.2017.1355468

    CAS  Article  PubMed  Google Scholar 

  11. Young BA, Lin E, Von Korff M, Simon G, Ciechanowski P, Ludman EJ, Everson-Stewart S, Kinder L, Oliver M, Boyko EJ, Katon WJ (2008) Diabetes complications severity index and risk of mortality, hospitalization, and healthcare utilization. Am J Manag Care 14(1):15–23

    PubMed  PubMed Central  Google Scholar 

  12. Sobrin L, Yu Y, Susarla G, Chan W, Xia T, Kempen JH, Hubbard RA, VanderBeek BL (2020) Risk of non-infectious uveitis with female hormonal therapy in a large healthcare claims database. Ophthalmology. https://doi.org/10.1016/j.ophtha.2020.04.034

    Article  PubMed  Google Scholar 

  13. Sobrin L, Stanwyck LK, Pan W, Hubbard RA, Kempen JH, VanderBeek BL (2018) Association of hypovitaminosis D with increased risk of uveitis in a large health care claims database. JAMA Ophthalmol 136(5):548–552. https://doi.org/10.1001/jamaophthalmol.2018.0642

    Article  PubMed  PubMed Central  Google Scholar 

  14. Forooghian F, Maberley D, Albiani DA, Kirker AW, Merkur AB, Etminan M (2013) Uveitis risk following oral fluoroquinolone therapy: a nested case-control study. Ocul Immunol Inflamm 21(5):390–393. https://doi.org/10.3109/09273948.2013.808351

    CAS  Article  PubMed  Google Scholar 

  15. Zheng Y, Heagerty PJ (2005) Partly conditional survival models for longitudinal data. Biometrics 61(2):379–391. https://doi.org/10.1111/j.1541-0420.2005.00323.x

    Article  PubMed  Google Scholar 

  16. Stein JD, Blachley TS, Musch DC (2013) Identification of persons with incident ocular diseases using health care claims databases. Am J Ophthalmol 156(6):1169–1175. https://doi.org/10.1016/j.ajo.2013.06.035 (e1163)

    Article  PubMed  Google Scholar 

  17. Tonelli M, Wiebe N, Fortin M, Guthrie B, Hemmelgarn BR, James MT, Klarenbach SW, Lewanczuk R, Manns BJ, Ronksley P, Sargious P, Straus S, Quan H (2015) Methods for identifying 30 chronic conditions: application to administrative data. BMC Med Inform Decis Mak 15:31. https://doi.org/10.1186/s12911-015-0155-5

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ciurleo R, Bramanti P, Marino S (2014) Role of statins in the treatment of multiple sclerosis. Pharmacol Res 87:133–143. https://doi.org/10.1016/j.phrs.2014.03.004

    CAS  Article  PubMed  Google Scholar 

  19. Wang JY, Yao TC, Tsai YT, Wu AC, Tsai HJ (2018) Increased dose and duration of statin use is associated with decreased asthma-related emergency department visits and hospitalizations. J Allergy Clin Immunol Pract 6(5):1588–1595. https://doi.org/10.1016/j.jaip.2017.12.017 (e1581)

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lord EM, Weir IR, Trinquart L (2018) Design analysis indicates potential overestimation of treatment effects in randomized controlled trials supporting Food and Drug Administration cancer drug approvals. J Clin Epidemiol 103:1–9. https://doi.org/10.1016/j.jclinepi.2018.06.012

    Article  PubMed  Google Scholar 

  21. Sobrin L, Pistilli M, Dreger K, Kothari S, Khachatryan N, Artornsombudh P, Pujari SS, Foster CS, Jabs DA, Nussenblatt RB, Rosenbaum JT, Levy-Clarke GA, Sen HN, Suhler EB, Thorne JE, Bhatt NP, Kempen JH, Systemic Immunosuppressive Therapy for Eye Diseases Cohort Study Research G (2020) Factors predictive of remission of chronic anterior uveitis. Ophthalmology 127(6):826–834. https://doi.org/10.1016/j.ophtha.2019.11.020

    Article  PubMed  Google Scholar 

  22. Harry R, Gegg M, Hankey D, Zambarakji H, Pryce G, Baker D, Calder V, Adamson P, Greenwood J (2005) Suppression of autoimmune retinal disease by lovastatin does not require Th2 cytokine induction. J Immunol 174(4):2327–2335. https://doi.org/10.4049/jimmunol.174.4.2327

    Article  PubMed  Google Scholar 

  23. Kohno H, Sakai T, Saito S, Okano K, Kitahara K (2007) Treatment of experimental autoimmune uveoretinitis with atorvastatin and lovastatin. Exp Eye Res 84(3):569–576. https://doi.org/10.1016/j.exer.2006.11.011

    CAS  Article  PubMed  Google Scholar 

  24. Thomas PB, Albini T, Giri RK, See RF, Evans M, Rao NA (2005) The effects of atorvastatin in experimental autoimmune uveitis. Br J Ophthalmol 89(3):275–279. https://doi.org/10.1136/bjo.2004.050401

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Kimura M, Kurose I, Russell J, Granger DN (1997) Effects of fluvastatin on leukocyte-endothelial cell adhesion in hypercholesterolemic rats. Arterioscler Thromb Vasc Biol 17(8):1521–1526. https://doi.org/10.1161/01.atv.17.8.1521

    CAS  Article  PubMed  Google Scholar 

  26. Mesri M, Liversidge J, Forrester JV (1994) ICAM-1/LFA-1 interactions in T-lymphocyte activation and adhesion to cells of the blood-retina barrier in the rat. Immunology 83(1):52–57

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Desai RJ, Eddings W, Liao KP, Solomon DH, Kim SC (2015) Disease-modifying antirheumatic drug use and the risk of incident hyperlipidemia in patients with early rheumatoid arthritis: a retrospective cohort study. Arthritis Care Res 67(4):457–466. https://doi.org/10.1002/acr.22483

    CAS  Article  Google Scholar 

  28. Bearelly S, Mruthyunjaya P, Tzeng JP, Suner IJ, Shea AM, Lee JT, Kowalski JW, Curtis LH, Schulman KA, Lee PP (2008) Identification of patients with diabetic macular edema from claims data: a validation study. Arch Ophthalmol 126(7):986–989. https://doi.org/10.1001/archopht.126.7.986

    Article  PubMed  Google Scholar 

  29. Muir KW, Gupta C, Gill P, Stein JD (2013) Accuracy of international classification of diseases, ninth revision, clinical modification billing codes for common ophthalmic conditions. JAMA ophthalmology 131(1):119–120. https://doi.org/10.1001/jamaophthalmol.2013.577

    Article  PubMed  PubMed Central  Google Scholar 

  30. Goto M, Ohl ME, Schweizer ML, Perencevich EN (2014) Accuracy of administrative code data for the surveillance of healthcare-associated infections: a systematic review and meta-analysis. Clin Infect Dis 58(5):688–696. https://doi.org/10.1093/cid/cit737

  31. Santos CA, Brennan DC, Olsen MA (2015) Accuracy of inpatient international classification of diseases, ninth revision, clinical modification coding for cytomegalovirus after kidney transplantation. Transpl Proc 47(6):1772–1776. https://doi.org/10.1016/j.transproceed.2015.04.087

    CAS  Article  Google Scholar 

  32. Pimentel MA, Browne EN, Janardhana PM, Borkar DS, Tham VM, Uchida A, Vinoya AC, Acharya NR (2016) Assessment of the accuracy of using ICD-9 codes to identify uveitis, herpes zoster ophthalmicus, scleritis, and episcleritis. JAMA Ophthalmol 134(9):1001–1006. https://doi.org/10.1001/jamaophthalmol.2016.2166

    Article  PubMed  Google Scholar 

  33. Palestine AG, Merrill PT, Saleem SM, Jabs DA, Thorne JE (2018) Assessing the precision of ICD-10 codes for uveitis in 2 electronic health record systems. JAMA Ophthalmol 136(10):1186–1190. https://doi.org/10.1001/jamaophthalmol.2018.3001

    Article  PubMed  PubMed Central  Google Scholar 

  34. Setoguchi S, Solomon DH, Glynn RJ, Cook EF, Levin R, Schneeweiss S (2007) Agreement of diagnosis and its date for hematologic malignancies and solid tumors between Medicare claims and cancer registry data. Cancer Causes Control 18(5):561–569. https://doi.org/10.1007/s10552-007-0131-1

    Article  PubMed  Google Scholar 

  35. Chubak J, Pocobelli G, Weiss NS (2012) Tradeoffs between accuracy measures for electronic health care data algorithms. J Clin Epidemiol 65(3):343–349. https://doi.org/10.1016/j.jclinepi.2011.09.002 (e342)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

All contributors to the study have been designated as authors of the manuscript in accordance with ICMJE’s guidelines.

Funding

LS, YY, JHK, RAH, and BLV were funded by National Institutes of Health (R21 EY029851). The University of Pennsylvania Core Grant for Vision Research (P30 EY001583) provided funding to researchers in the University of Pennsylvania’s Department of Ophthalmology. Additional funding was provided to LS, JHK, and BLV by Research to Prevent Blindness (RPB) and to JHK by Sight for Souls.

Author information

Authors and Affiliations

Authors

Contributions

LS, JHK, and BLV conceived the study. LS, YY, and BLV carried out the analysis. LS, YY, SH, GS, RAH, JHK, and BLV contributed to the interpretation of the results. LS and SH wrote the manuscript with input from all authors. All authors provided critical feedback and helped shape the analysis and manuscript. Lucia Sobrin and Brian L. VanderBeek had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Corresponding author

Correspondence to Lucia Sobrin.

Ethics declarations

Ethics approval

The study protocol was approved by the Massachusetts Eye and Ear Infirmary’s and University of Pennsylvania’s Institutional Review Boards. This study was deemed exempt from review due to the de-identified nature of the data.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

Dr. Kempen has served as a consultant for Gilead (Data and Safety Monitoring Committee Chair). Dr. Hubbard has received financial support from Pfizer and Humana. The remaining authors have no conflicts of interest to disclose.

Disclaimer

The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. None of the funding organizations had any role in the design or conduct of the study.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sobrin, L., Yu, Y., Han, S. et al. Decreased risk of non-infectious anterior uveitis with statin therapy in a large healthcare claims database. Graefes Arch Clin Exp Ophthalmol 259, 2783–2793 (2021). https://doi.org/10.1007/s00417-021-05243-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-021-05243-8

Keywords

  • Uveitis
  • Statins
  • Epidemiology
  • Biostatistics
  • Statistics
  • Big data