Skip to main content
Log in

Experimental assessment of the performance of vitreous cutters with fluids with different rheological properties

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To assess the influence of rheological properties of an artificial vitreous (AV) on the performance of double-blade (DB) and single-blade (SB) guillotine vitreous cutters, with 23-, 25-, and 27-gauge (G) probes.

Methods

We evaluate the aspiration flow rate, using an optical method, based on image processing. Experiments are conducted using ten viscoelastic vitreous phantoms, with different properties that are measured with rheological tests.

Results

Aspiration rate strongly varies with fluid properties. Regardless of cutter geometry and operational conditions, the flow rate significantly decreases as vitreous viscosity and elasticity increase.

Conclusions

All tested vitreous probes are very sensitive to changes in fluid rheology. SB cutters produce smaller flow rates compared with DB ones of the same caliber; however, they are less sensitive to fluid properties at low aspiration pressures. The use of vitreous substitutes for test performance guarantees comparability between flow rate results achieved with different vitrectomy systems operating in different media. This outcome is further confirmed by the low values of estimated flow rate relative errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rossi T, Querzoli G, Angelini G, Malvasi C, Iossa M, Placentino L, Ripandelli G (2014) Fluid dynamics of vitrectomy probes. Retina 34(3):558–567

    Article  Google Scholar 

  2. Abulon DJK, Buboltz DC (2016) Porcine vitreous flow behavior during high-speed vitrectomy up to 7500 cuts per minute. Transl Vis Sci Technol 5(1):7–7

    Article  Google Scholar 

  3. Romano MR, Stocchino A, Ferrara M, Lagazzo A, Repetto R (2018) Fluidics of single and double blade guillotine vitrectomy probes in balanced salt solution and artificial vitreous. Transl Vis Sci Technol 7(6):19–19

    Article  Google Scholar 

  4. Rossi T, Querzoli G, Malvasi C, Iossa M, Angelini G, Ripandelli G (2014) A new vitreous cutter blade engineered for constant flow vitrectomy. Retina 34(7):1487–1491

    Article  Google Scholar 

  5. Abulon DJK (2015) Vitreous flow rates through dual pneumatic cutters: effects of duty cycle and cut rate. Clin Ophthalmol (Auckland, NZ) 9:253

    Article  Google Scholar 

  6. Rossi T, Querzoli G, Angelini G, Malvasi C, Iossa M, Placentino L, Ripandelli G (2014) Introducing new vitreous cutter blade shapes: a fluid dynamics study. Retina 34(9):1896–1904

    Article  Google Scholar 

  7. Magalhaes O Jr, Chong L, DeBoer C, Bhadri P, Kerns R, Barnes A, Fang S, Humayun M (2008) Vitreous dynamics: vitreous flow analysis in 20-, 23-, and 25-gauge cutters. Retina 28(2):236–241

    Article  Google Scholar 

  8. Zehetner C, Moelgg M, Bechrakis E, Linhart C, Bechrakis NE (2018) In vitro flow analysis of novel double-cutting, open-port, ultrahigh-speed vitrectomy systems. Retina 38(12):2309–2316

    Article  Google Scholar 

  9. Osawa S, Oshima Y (2014) Innovations in 27-gauge vitrectomy for sutureless microincision vitrectomy surgery. Retina Today 9:42–45

    Google Scholar 

  10. Rizzo S, Barca F, Caporossi T, Mariotti C (2015) Twenty-seven–gauge vitrectomy for various vitreoretinal diseases. Retina 35(6):1273–1278

    Article  Google Scholar 

  11. De Oliveira PRC, Berger AR, Chow DR (2016) Vitreoretinal instruments: vitrectomy cutters, endoillumination and wide-angle viewing systems. Int J Retin Vitr 2(1):1–15

    Article  Google Scholar 

  12. Watanabe A, Tsuzuki A, Arai K, Gekka T, Tsuneoka H (2016) Treatment of dropped nucleus with a 27-gauge twin duty cycle vitreous cutter. Case Rep Ophthalmol 7(1):44–48

    Article  Google Scholar 

  13. Romano MR, Cennamo G, Ferrara M, Cennamo M, Cennamo G (2017) Twenty-seven-gauge versus 25-gauge vitrectomy for primary rhegmatogenous retinal detachment. Retina 37(4):637–642

    Article  Google Scholar 

  14. Stocchino A, Nepita I, Repetto R, Dodero A, Castellano M, Ferrara M, Romano MR (2020) Fluid dynamic assessment of hypersonic and guillotine vitrectomy probes in viscoelastic vitreous substitutes. Transl Vis Sci Technol 9(6):9–9

    Article  Google Scholar 

  15. Pokki J, Ergeneman O, Sevim S, Enzmann V, Torun H, Nelson BJ (2015) Measuring localized viscoelasticity of the vitreous body using intraocular microprobes. Biomed Microdevices 17(5):85

    Article  Google Scholar 

  16. Sebag J (1987) Age-related changes in human vitreous structure. Graefes Arch Clin Exp Ophthalmol 225(2):89–93

    Article  CAS  Google Scholar 

  17. Los LI, van der Worp RJ, van Luyn MJ, Hooymans JM (2003) Age-related liquefaction of the human vitreous body: LM and TEM evaluation of the role of proteoglycans and collagen. Invest Ophthalmol Vis Sci 44(7):2828–2833

    Article  Google Scholar 

  18. Lee B, Litt M, Buchsbaum G (1992) Rheology of the vitreous body. Part I: viscoelasticity of human vitreous. Biorheology 29(5-6):521–533

    Article  CAS  Google Scholar 

  19. Lee B, Litt M, Buchsbaum G (1994) Rheology of the vitreous body: Part 2. Viscoelasticity of bovine and porcine vitreous. Biorheology 31(4):327–338

    Article  Google Scholar 

  20. Press WH, Teukolsky SA, Flannery BP, Vetterling WT (1992) Numerical recipes in Fortran 77: volume 1, volume 1 of Fortran numerical recipes: the art of scientific computing. Cambridge university press

  21. Kummer MP, Abbott JJ, Dinser S, Nelson BJ (2007) Artificial vitreous humor for in vitro experiments. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp 6406–6409. https://doi.org/10.1109/IEMBS.2007.4353822

    Chapter  Google Scholar 

  22. Sebag J (2012) The vitreous: structure, function, and pathobiology. Springer Science & Business Media

  23. Tanner RI (2000) Engineering rheology, vol 52. OUP Oxford

  24. Nickerson CS, Park J, Kornfield JA, Karageozian H (2008) Rheological properties of the vitreous and the role of hyaluronic acid. J Biomech 41(9):1840–1846

    Article  Google Scholar 

  25. Swindle KE, Hamilton PD, Ravi N (2008) In situ formation of hydrogels as vitreous substitutes: viscoelastic comparison to porcine vitreous. J Biomed Mater Res Part A 87(3):656–665

    Article  Google Scholar 

  26. Sharif-Kashani P, Hubschman JP, Sassoon D, Kavehpour HP (2011) Rheology of the vitreous gel: effects of macromolecule organization on the viscoelastic properties. J Biomech 44(3):419–423

    Article  Google Scholar 

  27. Silva AF, Alves MA, Oliveira MS (2017) Rheological behaviour of vitreous humour. Rheol Acta 56(4):377–386

    Article  CAS  Google Scholar 

  28. Hubschman JP, Gupta A, Bourla DH, Culjat M, Yu FEI, Schwartz SD (2008) 20-, 23-, and 25-gauge vitreous cutters: performance and characteristics evaluation. Retina 28(2):249–257

    Article  Google Scholar 

  29. Charles S (2014) Fluidics and cutter dynamics. In: Microincision Vitrectomy Surgery, vol 54. Karger Publishers, pp 31–37

  30. Shafaie S, Hutter V, Brown MB, Cook MT, Chau DY (2018) Diffusion through the ex vivo vitreal body–bovine, porcine, and ovine models are poor surrogates for the human vitreous. Int J Pharm 550(1-2):207–215

    Article  CAS  Google Scholar 

  31. Rossi T, Querzoli G, Angelini G, Malvasi C, Rossi A, Morini M, Esposito G, Micera A, di Luca NM, Ripandelli G (2016) Hydraulic resistance of vitreous cutters: the impact of blade design and cut rate. Transl Vis Sci Technol 5(4):1–1

    Article  CAS  Google Scholar 

  32. Stanga PE, Pastor-Idoate S, Zambrano I, Carlin P, McLeod D (2017) Performance analysis of a new hypersonic vitrector system. PLoS One 12(6):e0178462

    Article  Google Scholar 

  33. Mitsui K, Kogo J, Takeda H, Shiono A, Sasaki H, Munemasa Y, Kitaoka Y, Takagi H (2016) Comparative study of 27-gauge vs 25-gauge vitrectomy for epiretinal membrane. Eye 30(4):538–544

    Article  CAS  Google Scholar 

  34. Oh H, Oshima Y (2014) Microincision vitrectomy surgery: emerging techniques and technology. Karger Medical and Scientific Publishers

  35. Khan MA, Shahlaee A, Toussaint B, Hsu J, Sivalingam A, Dugel PU, Lakhanpal RR, Riemann CD, Berrocal MH, Regillo CD, Ho AC (2016) Outcomes of 27 gauge microincision vitrectomy surgery for posterior segment disease. Am J Ophthalmol 161:36–43

    Article  Google Scholar 

  36. Ma J, Wang Q, Niu H (2020) Comparison of 27-gauge and 25-gauge microincision vitrectomy surgery for the treatment of vitreoretinal disease: a systematic review and meta-analysis. J Ophthalmol 2020

  37. Oshima Y, Wakabayashi T, Sato T, Ohji M, Tano Y (2010) A 27–gauge instrument system for transconjunctival sutureless microincision vitrectomy surgery. Ophthalmology 117(1):93–102

    Article  Google Scholar 

Download references

Acknowledgments

DORC provided the EVA system for the experimental measurements.

Funding

The present work was supported by DORC International, Zuidland, The Netherlands, through a research grant to the Department of Civil, Chemical, and Environmental Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Nepita.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain studies involving human participants.

Consent to participate and for publication

All authors provided written informed consent to the submission of this manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 537 kb)

ESM 2

(RAR 1193 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nepita, I., Repetto, R., Dodero, A. et al. Experimental assessment of the performance of vitreous cutters with fluids with different rheological properties. Graefes Arch Clin Exp Ophthalmol 259, 1113–1121 (2021). https://doi.org/10.1007/s00417-020-05061-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-020-05061-4

Keywords

Navigation