Skip to main content
Log in

The impact of visual axis position on the optical quality after implantation of multifocal intraocular lenses with different asphericity values

  • Cataract
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the effect of visual axis positioning on the optical performance of the Tecnis MIOL and the Diff-aA MIOL.

Methods

In this prospective, randomized comparative study, 70 eyes of 35 subjects with senile cataract were implanted with the spherical aberration–correcting diffractive, bifocal Tecnis ZLB00 IOL and 60 eyes of 30 age-matched subjects with the spherical aberration neutral, diffractive, bifocal Diffractiva IOL. Observation procedure was performed 1, 3, and 6 months postoperatively. Main outcome measures included uncorrected and corrected distance and near visual acuity, manifest refraction, ocular aberrations, and visual quality metrics with 2 mm and 4 mm pupil and the position of visual axis.

Results

At the 6-month visit, no significant difference was found in monocular and binocular uncorrected (UDVA) and corrected (CDVA) distance and near (UNVA, CNVA) visual acuity between the groups. Spherical and coma-like aberrations were similar measured with a 2-mm pupil, but with a 4-mm pupil, the SA was significantly larger (in negative direction) in the Diffractiva group. The higher-order Strehl ratio and MTF was significantly larger in the Diffractiva group measured at 2 mm entrance pupil; however, this difference disappeared by the 4-mm pupil measurements. Postoperative angle alpha distance had a significant influence on HO Strehl value.

Conclusions

The size of angle alpha is a predictive factor of image quality by multifocal IOL patients.

Trial Registration

Trial registration number and date of registration: NCT04274088, 14.02.2020.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Berrio E, Tabernero J, Artal P (2010) Optical aberrations and alignment of the eye with age. J Vis 10:34

    Article  Google Scholar 

  2. Marcos S, Rosales P, Llorente L, Barbero S, Jiménez-Alfaro I (2008) Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism. Vis Res 48:70–79

    Article  Google Scholar 

  3. Yoon SY, Song IS, Kim JY, Kim MJ, Tchah H (2013) Bilateral mix-and-match versus unilateral multifocal intraocular lens implantation: long-term comparison. J Cataract Refract Surg 39:1682–1690

    Article  Google Scholar 

  4. Rabsilber TM, Rudalevicius P, Jasinskas V, Holzer MP, Auffarth GU (2013) Influence of +3.00 D and +4.00 D near addition on functional outcomes of a refractive multifocal intraocular lens model. J Cataract Refract Surg 39:350–357

    Article  Google Scholar 

  5. Prakash G, Agarwal A, Prakash DR, Kumar DA, Agarwal A, Jacob S (2011) Role of angle kappa in patient dissatisfaction with refractive-design multifocal intraocular lenses. J Cataract Refract Surg 37:1739–1740

    Article  Google Scholar 

  6. Prakash G, Prakash DR, Agarwal A, Kumar DA, Agarwal A, Jacob S (2011) Predictive factor and kappa angle analysis for visual satisfactions in patients with multifocal IOL implantation. Eye 25:1187–1193

    Article  CAS  Google Scholar 

  7. Kim JW, Eom Y, Chung HW (2020) Factors for good near and distance visual outcomes of multifocal intraocular lens with inferior segmental near add. Graefes Arch Clin Exp Ophthalmol 258:1735–1743

    Article  Google Scholar 

  8. Lasta M, Miháltz K, Kovács I, Vécsei-Marlovits PV (2017) Effect of spherical aberration on the optical quality after implantation of two different aspherical intraocular lenses. J Ophthalmol. https://doi.org/10.1155/2017/8039719

  9. Eom Y, Yoo E, Kang SY, Kim HM, Song JS (2013) Change in efficiency of aspheric intraocular lenses based on pupil diameter. Am J Ophthalmol 155:492–498

    Article  Google Scholar 

  10. Eppig T, Scholz K, Langenbucher A (2008) Assessing the optical performance of multifocal (diffractive) intraocular lenses. Ophthalmic Physiol Opt 28:467–474

    Article  Google Scholar 

  11. Kumar DA, Agarwal A, Prakash G, Jacob S, Saravanan Y, Agarwal A (2011) Evaluation of intraocular lens tilt with anterior segment optical coherence tomography. Am J Ophthalmol 151:406–412

    Article  Google Scholar 

  12. Piñero DP, Sánchez-Pérez PJ, Alió JL (2011) Repeatability of measurements obtained with a ray tracing aberrometer. Optom Vis Sci 88:1099–1105

    Article  Google Scholar 

  13. Jun I, Choi YJ, Kim EK, Seo KY, Kim TI (2012) Internal spherical aberration by ray tracing-type aberrometry in multifocal pseudophakic eyes. Eye 26:1243–1248

    Article  CAS  Google Scholar 

  14. Lombardo M, Lombardo G (2010) Wave aberration of human eyes and new descriptors of image optical quality and visual performance. J Cataract Refract Surg 36:313–331

    Article  Google Scholar 

  15. Grzybowski A, Kanclerz P, Muzyka-Woźniak M (2019) Methods for evaluating quality of life and vision in patients undergoing lens refractive surgery. Graefes Arch Clin Exp Ophthalmol 257(6):1091–1099

  16. Labuz G, Reus NJ, van den Berg TJ (2016) Comparison of ocular straylight after implantation of multifocal intraocular lenses. J Cataract Refract Surg 42:618–625

    Article  Google Scholar 

  17. Puell MC, Pérez-Carrasco MJ, Hurtado-Ceña FJ, Álvarez-Rementería L (2015) Disk halo size measured in individuals with monofocal versus diffractive multifocal intraocular lenses. J Cataract Refract Surg 41:2417–2423

    Article  CAS  Google Scholar 

  18. Grzybowski A, Kanclerz P, Tuuminen R (2020) Multifocal intraocular lenses and retinal diseases. Graefes Arch Clin Exp Ophthalmol. https://doi.org/10.1007/s00417-020-04603-0

  19. Ravikumar S, Bradley A, Thibos LN (2014) Chromatic aberration and polychromatic image quality with diffractive multifocal intraocular lenses. J Cataract Refract Surg 40:1192–1204

    Article  Google Scholar 

  20. Vega F, Alba-Bueno F, Millán MS, Varón C, Gil MA, Buil JA (2015) Halo and through-focus performance of four diffractive multifocal intraocular lenses. Invest Ophthalmol Vis Sci 56:3967–3975

    Article  CAS  Google Scholar 

  21. Santhiago MR, Wilson SE, Netto MV, Ghanen RC, Monteiro ML, Bechara SJ, Espana EM, Mello GR, Kara N Jr (2012) Modulation transfer function and optical quality after bilateral implantation of a +3.00 D versus a +4.00 D multifocal intraocular lens. J Cataract Refract Surg 38:215–220

    Article  Google Scholar 

  22. Castillo-Gómez A, Carmona-González D, Martínez-de-la-Casa JM, Palomino-Bautista C, García-Feijoo J (2009) Evaluation of image quality after implantation of 2 diffractive multifocal intraocular lens models. J Cataract Refract Surg 35:1244–1250

    Article  Google Scholar 

  23. Alba-Bueno F, Vega F, Millán MS (2014) Halos and multifocal intraocular lenses: origin and interpretation. Arch Soc Esp Oftalmol 89:397–404

    Article  CAS  Google Scholar 

  24. Yamaguchi T, Negishi K, Ono T, Torii H, Dogru M, Yamaguchi K, Ohnuma K, Tsubota K (2009) Feasibility of spherical aberration correction with aspheric intraocular lenses in cataract surgery based on individual pupil diameter. J Cataract Refract Surg 35:1725–1733

    Article  Google Scholar 

  25. Liu JP, Zhang F, Zhao JY, Ma LW, Zhang JS (2013) Visual function and higher order aberration after implantation of aspheric and spherical multifocal intraocular lenses: a meta-analysis. Int J Ophthalmol 6:690–695

    PubMed  PubMed Central  Google Scholar 

  26. Ortiz D, Alió JL, Bernabéu G, Pongo V (2008) Optical performance of monofocal and multifocal intraocular lenses in the human eye. J Cataract Refract Surg 34:755–762

    Article  Google Scholar 

  27. Alio JL, Plaza-Puche AB, Férnandez-Buenaga R, Pikkel J, Maldonado M (2017) Multifocal intraocular lenses: an overview. Surv Ophthalmol 62:611–634

    Article  Google Scholar 

  28. Liu JW, Haw WW (2014) Optimizing outcomes of multifocal intraocular lenses. Curr Opin Ophthalmol 25:44–48

    Article  Google Scholar 

  29. Ortiz C, Esteve-Taboada JJ, Belda-Salmerón L, Monsálvez-Romín D, Domínguez-Vicent (2016) Effect of decentration on the optical quality of two intraocular lenses. Optom Vis Sci 93:1552–1559

    Article  Google Scholar 

  30. Karhanová M, Pluháček F, Mlčák P, Vláčil O, Šín M, Marešová K (2015) The importance of angle kappa evaluation for implantation of diffractive multifocal intra-ocular lenses using pseudophakic eye model. Acta Ophthalmol 93:e123–e128

    Article  Google Scholar 

  31. Tchah H, Nam K, Yoo A (2017) Predictive factors for photic phenomena after refractive, rotationally asymmetric, multifocal intraocular lens implantation. Int J Ophthalmol 10:241–245

    PubMed  PubMed Central  Google Scholar 

  32. Fischinger I, Seiler TG, Schmidinger G, Seiler T (2015) Pupil centroid shift: marketing tool or essential clinical parameter? Ophthalmologe 112:661–664

    Article  CAS  Google Scholar 

  33. Guillon M, Dumbleton K, Theodoratos P, Gobbe M, Wooley CB, Moody K (2016) The effects of age, refractive status, and luminance on pupil size. Optom Vis Sci 93:1093–1100

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kata Miháltz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Ethics Committee of the City of Vienna and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miháltz, K., Vécsei-Marlovits, P.V. The impact of visual axis position on the optical quality after implantation of multifocal intraocular lenses with different asphericity values. Graefes Arch Clin Exp Ophthalmol 259, 673–683 (2021). https://doi.org/10.1007/s00417-020-05052-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-020-05052-5

Keywords

Navigation