Skip to main content

Advertisement

Log in

Linoleic acid inhibits in vitro function of human and murine dendritic cells, CD4+T cells and retinal pigment epithelial cells

  • Inflammatory Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Increased linoleic acid (LA) was observed in acute anterior uveitis (AAU) patient feces in our previous study. To investigate the immunoregulatory effect of LA, we studied the effect of LA on human and murine dendritic cells (DCs), CD4+T cells, and retinal pigment epithelial (RPE) cells in vitro.

Methods

The level of LA in feces from AAU patients and healthy individuals was measured by gas chromatography coupled with a mass spectrometer (GC-MS). The immunoregulatory effect of LA on human and murine DCs, CD4+ T cells, and RPE cells was evaluated by enzyme linked immunosorbent assay (ELISA) and flow cytometry (FCM). The effect of LA on DCs was evaluated by Tandem mass tag (TMT)-based proteomics analysis.

Results

Increased LA was observed in feces from AAU patients (1018.35 ± 900.01 mg/kg) as compared with healthy individuals (472.55 ± 365.49 mg/kg, p = 0.0136). LA attenuated the antigen-presenting function of human and murine DCs by decreasing the expression of CD40, the secretion of IL-6 and IL-12p70, and the ability to shift naïve T cells towards T helper type 1 (Th1) and Th17 cells. LA also inhibited the secretion of MCP-1 and IL-8 from RPE cells. Proteomics analysis showed differential expression of 28 proteins, including squalene epoxidase (SQLE), farnesyl-diphosphate farnesyltransferase 1 (FDFT1), and cytochrome P450 family 51 subfamily A member 1 (CYP51A1), in LA-treated DCs compared with controls. LA also accelerated the apoptosis of DCs from healthy individuals.

Conclusion

LA inhibited the function of human and murine DCs, CD4+T cells, and RPE cells, regulated the expression of proteins, and promoted the apoptosis of human DCs. These results collectively suggest that LA might decrease the function of immune cells in vitro, and further studies are needed to investigate its role in the pathogenesis of AAU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tsirouki T, Dastiridou A, Symeonidis C, Tounakaki O, Brazitikou I, Kalogeropoulos C, Androudi S (2018) A Focus on the Epidemiology of Uveitis. Ocul Immunol Inflamm 26(1):2–16. https://doi.org/10.1080/09273948.2016.1196713

    Article  PubMed  Google Scholar 

  2. Miserocchi E, Fogliato G, Modorati G, Bandello F (2013) Review on the worldwide epidemiology of uveitis. Eur J Ophthalmol 23(5):705–717. https://doi.org/10.5301/ejo.5000278

    Article  PubMed  Google Scholar 

  3. Sharma SM, Jackson D (2017) Uveitis and spondyloarthropathies. Best Pract Res Clin Rheumatol 31(6):846–862. https://doi.org/10.1016/j.berh.2018.08.002

    Article  PubMed  Google Scholar 

  4. Huang X, Ye Z, Cao Q, Su G, Wang Q, Deng J, Zhou C, Kijlstra A, Yang P (2018) Gut microbiota composition and fecal metabolic phenotype in patients with acute anterior uveitis. Invest Ophthalmol Vis Sci 59(3):1523–1531. https://doi.org/10.1167/iovs.17-22677

    Article  CAS  PubMed  Google Scholar 

  5. Das UN (2006) Essential fatty acids: biochemistry, physiology and pathology. Biotechnol J 1(4):420–439. https://doi.org/10.1002/biot.200600012

    Article  CAS  PubMed  Google Scholar 

  6. Burns JL, Nakamura MT, Ma DWL (2018) Differentiating the biological effects of linoleic acid from arachidonic acid in health and disease. Prostaglandins Leukot Essent Fat Acids 135:1–4. https://doi.org/10.1016/j.plefa.2018.05.004

    Article  CAS  Google Scholar 

  7. Tortosa-Caparros E, Navas-Carrillo D, Marin F, Orenes-Pinero E (2017) Anti-inflammatory effects of omega 3 and omega 6 polyunsaturated fatty acids in cardiovascular disease and metabolic syndrome. Crit Rev Food Sci Nutr 57(16):3421–3429. https://doi.org/10.1080/10408398.2015.1126549

    Article  CAS  PubMed  Google Scholar 

  8. Kim M, Furuzono T, Yamakuni K, Li Y, Kim YI, Takahashi H, Ohue-Kitano R, Jheng HF, Takahashi N, Kano Y, Yu R, Kishino S, Ogawa J, Uchida K, Yamazaki J, Tominaga M, Kawada T, Goto T (2017) 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, enhances energy metabolism by activation of TRPV1. FASEB J 31(11):5036–5048. https://doi.org/10.1096/fj.201700151R

    Article  CAS  PubMed  Google Scholar 

  9. Bai L, Liu Y, Hou S, Liao D, Kijlstra A, Yang P (2016) Association of T-Bet, GATA-3, RORC, and FOXP3 copy number variations with acute anterior uveitis with or without ankylosing spondylitis in Chinese Han. Invest Ophthalmol Vis Sci 57(4):1847–1852. https://doi.org/10.1167/iovs.15-17960

    Article  CAS  PubMed  Google Scholar 

  10. Raychaudhuri SP, Deodhar A (2014) The classification and diagnostic criteria of ankylosing spondylitis. J Autoimmun 48-49:128–133. https://doi.org/10.1016/j.jaut.2014.01.015

    Article  PubMed  Google Scholar 

  11. Fu J, Gong Z, Bae S (2019) Assessment of the effect of methyl-triclosan and its mixture with triclosan on developing zebrafish (Danio rerio) embryos using mass spectrometry-based metabolomics. J Hazard Mater 368:186–196. https://doi.org/10.1016/j.jhazmat.2019.01.019

    Article  CAS  PubMed  Google Scholar 

  12. Cousin SP, Hugl SR, Wrede CE, Kajio H, Myers MG Jr, Rhodes CJ (2001) Free fatty acid-induced inhibition of glucose and insulin-like growth factor I-induced deoxyribonucleic acid synthesis in the pancreatic beta-cell line INS-1. Endocrinology 142(1):229–240. https://doi.org/10.1210/endo.142.1.7863

    Article  CAS  PubMed  Google Scholar 

  13. Yang J, Feng S, Yi G, Wu W, Yi R, Lu X, Xu W, Qiu H (2016) Inhibition of RelA expression via RNA interference induces immune tolerance in a rat keratoplasty model. Mol Immunol 73:88–97. https://doi.org/10.1016/j.molimm.2016.03.014

    Article  CAS  PubMed  Google Scholar 

  14. Lewis GF, Carpentier A, Adeli K, Giacca A (2002) Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev 23(2):201–229. https://doi.org/10.1210/edrv.23.2.0461

    Article  CAS  PubMed  Google Scholar 

  15. Baldeweg SE, Golay A, Natali A, Balkau B, Del Prato S, Coppack SW (2000) Insulin resistance, lipid and fatty acid concentrations in 867 healthy Europeans. European Group for the Study of Insulin Resistance (EGIR). Eur J Clin Investig 30(1):45–52. https://doi.org/10.1046/j.1365-2362.2000.00597.x

    Article  CAS  Google Scholar 

  16. Cinatl J Jr, Blaheta R, Bittoova M, Scholz M, Margraf S, Vogel JU, Cinatl J, Doerr HW (2000) Decreased neutrophil adhesion to human cytomegalovirus-infected retinal pigment epithelial cells is mediated by virus-induced up-regulation of Fas ligand independent of neutrophil apoptosis. J Immunol 165(8):4405–4413

    Article  CAS  PubMed  Google Scholar 

  17. Zhou Q, Xie F, Zhou B, Wang J, Wu B, Li L, Kang Y, Dai R, Jiang Y (2019) Differentially expressed proteins identified by TMT proteomics analysis in bone marrow microenvironment of osteoporotic patients. Osteoporos Int 30(5):1089–1098. https://doi.org/10.1007/s00198-019-04884-0

    Article  CAS  PubMed  Google Scholar 

  18. Qiu K, Zhang X, Wang L, Jiao N, Xu D, Yin J (2018) Protein expression landscape defines the differentiation potential specificity of adipogenic and myogenic precursors in the skeletal muscle. J Proteome Res 17(11):3853–3865. https://doi.org/10.1021/acs.jproteome.8b00530

    Article  CAS  PubMed  Google Scholar 

  19. Sarengaowa HW, Feng K, Xiu Z, Jiang A, Lao Y (2019) Tandem mass tag-based quantitative proteomic analysis reveal the inhibition mechanism of thyme essential oil against flagellum of Listeria monocytogenes. Food Res Int 125:108508. https://doi.org/10.1016/j.foodres.2019.108508

    Article  CAS  PubMed  Google Scholar 

  20. Worbs T, Hammerschmidt SI, Forster R (2017) Dendritic cell migration in health and disease. Nat Rev Immunol 17(1):30–48. https://doi.org/10.1038/nri.2016.116

    Article  CAS  PubMed  Google Scholar 

  21. Holtkamp GM, Kijlstra A, Peek R, de Vos AF (2001) Retinal pigment epithelium-immune system interactions: cytokine production and cytokine-induced changes. Prog Retin Eye Res 20(1):29–48. https://doi.org/10.1016/s1350-9462(00)00017-3

    Article  CAS  PubMed  Google Scholar 

  22. Chen M, Wang YH, Wang Y, Huang L, Sandoval H, Liu YJ, Wang J (2006) Dendritic cell apoptosis in the maintenance of immune tolerance. Science 311(5764):1160–1164. https://doi.org/10.1126/science.1122545

    Article  CAS  PubMed  Google Scholar 

  23. Ma C, Kesarwala AH, Eggert T, Medina-Echeverz J, Kleiner DE, Jin P, Stroncek DF, Terabe M, Kapoor V, ElGindi M, Han M, Thornton AM, Zhang H, Egger M, Luo J, Felsher DW, McVicar DW, Weber A, Heikenwalder M, Greten TF (2016) NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis. Nature 531(7593):253–257. https://doi.org/10.1038/nature16969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lovaszi M, Mattii M, Eyerich K, Gacsi A, Csanyi E, Kovacs D, Ruhl R, Szegedi A, Kemeny L, Stahle M, Zouboulis CC, Eyerich S, Torocsik D (2017) Sebum lipids influence macrophage polarization and activation. Br J Dermatol 177(6):1671–1682. https://doi.org/10.1111/bjd.15754

    Article  CAS  PubMed  Google Scholar 

  25. Whelan J, Fritsche K (2013) Linoleic acid. Adv Nutr 4(3):311–312. https://doi.org/10.3945/an.113.003772

    Article  PubMed  PubMed Central  Google Scholar 

  26. De Caterina R, Liao JK, Libby P (2000) Fatty acid modulation of endothelial activation. Am J Clin Nutr 71(1 Suppl):213S–223S. https://doi.org/10.1093/ajcn/71.1.213S

    Article  PubMed  Google Scholar 

  27. Mellman I (2013) Dendritic cells: master regulators of the immune response. Cancer Immunol Res 1(3):145–149. https://doi.org/10.1158/2326-6066.CIR-13-0102

    Article  CAS  PubMed  Google Scholar 

  28. Chen P, Tucker W, Hannes S, Liu B, Si H, Gupta A, Lee RW, Sen HN, Nussenblatt RB (2014) Levels of blood CD1c + mDC1 and CD1chi mDC1 subpopulation reflect disease activity in noninfectious uveitis. Invest Ophthalmol Vis Sci 56(1):346–352. https://doi.org/10.1167/iovs.14-15416

    Article  CAS  PubMed  Google Scholar 

  29. O'Rourke M, Fearon U, Sweeney CM, Basdeo SA, Fletcher JM, Murphy CC, Canavan M (2018) The pathogenic role of dendritic cells in non-infectious anterior uveitis. Exp Eye Res 173:121–128. https://doi.org/10.1016/j.exer.2018.05.008

    Article  CAS  PubMed  Google Scholar 

  30. Aguirre JE, Beswick EJ, Grim C, Uribe G, Tafoya M, Chacon Palma G, Samedi V, McKee R, Villeger R, Fofanov Y, Cong Y, Yochum G, Koltun W, Powell D, Pinchuk IV (2019) Matrix metalloproteinases cleave membrane-bound PD-L1 on CD90+ (myo-)fibroblasts in Crohn’s disease and regulate Th1/Th17 cell responses. Int Immunol. https://doi.org/10.1093/intimm/dxz060

  31. Gomariz RP, Juarranz Y, Carrion M, Perez-Garcia S, Villanueva-Romero R, Gonzalez-Alvaro I, Gutierrez-Canas I, Lamana A, Martinez C (2019) An Overview of VPAC Receptors in Rheumatoid Arthritis: Biological Role and Clinical Significance. Front Endocrinol (Lausanne) 10:729. https://doi.org/10.3389/fendo.2019.00729

    Article  Google Scholar 

  32. Ye Z, Deng B, Wang C, Zhang D, Kijlstra A, Yang P (2016) Decreased B and T lymphocyte attenuator in Behcet's disease may trigger abnormal Th17 and Th1 immune responses. Sci Rep 6:20401. https://doi.org/10.1038/srep20401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zou W, Wu Z, Xiang X, Sun S, Zhang J (2014) The expression and significance of T helper cell subsets and regulatory T cells CD(4)(+) CD(2)(5)(+) in peripheral blood of patients with human leukocyte antigen B27-positive acute anterior uveitis. Graefes Arch Clin Exp Ophthalmol 252(4):665–672. https://doi.org/10.1007/s00417-014-2567-9

    Article  CAS  PubMed  Google Scholar 

  34. Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75(8):1895–1904. https://doi.org/10.1021/ac0262560

    Article  CAS  PubMed  Google Scholar 

  35. Moulder R, Bhosale SD, Goodlett DR, Lahesmaa R (2018) Analysis of the plasma proteome using iTRAQ and TMT-based Isobaric labeling. Mass Spectrom Rev 37(5):583–606. https://doi.org/10.1002/mas.21550

    Article  CAS  PubMed  Google Scholar 

  36. Coman D, Vissers L, Riley LG, Kwint MP, Hauck R, Koster J, Geuer S, Hopkins S, Hallinan B, Sweetman L, Engelke UFH, Burrow TA, Cardinal J, McGill J, Inwood A, Gurnsey C, Waterham HR, Christodoulou J, Wevers RA, Pitt J (2018) Squalene Synthase deficiency: clinical, biochemical, and molecular characterization of a defect in cholesterol biosynthesis. Am J Hum Genet 103(1):125–130. https://doi.org/10.1016/j.ajhg.2018.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liang JQ, Teoh N, Xu L, Pok S, Li X, Chu ESH, Chiu J, Dong L, Arfianti E, Haigh WG, Yeh MM, Ioannou GN, Sung JJY, Farrell G, Yu J (2018) Dietary cholesterol promotes steatohepatitis related hepatocellular carcinoma through dysregulated metabolism and calcium signaling. Nat Commun 9(1):4490. https://doi.org/10.1038/s41467-018-06931-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Araldi E, Fernandez-Fuertes M, Canfran-Duque A, Tang W, Cline GW, Madrigal-Matute J, Pober JS, Lasuncion MA, Wu D, Fernandez-Hernando C, Suarez Y (2017) Lanosterol modulates TLR4-mediated innate immune responses in macrophages. Cell Rep 19(13):2743–2755. https://doi.org/10.1016/j.celrep.2017.05.093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fritsche KL (2008) Too much linoleic acid promotes inflammation-doesn't it? Prostaglandins Leukot Essent Fat Acids 79(3-5):173–175. https://doi.org/10.1016/j.plefa.2008.09.019

    Article  CAS  Google Scholar 

  40. Zhao JV, Schooling CM (2019) The role of linoleic acid in asthma and inflammatory markers: a Mendelian randomization study. Am J Clin Nutr 110(3):685–690. https://doi.org/10.1093/ajcn/nqz130

    Article  PubMed  Google Scholar 

  41. Serhan CN (2007) Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu Rev Immunol 25:101–137. https://doi.org/10.1146/annurev.immunol.25.022106.141647

    Article  CAS  PubMed  Google Scholar 

  42. Hucik B, Sarr O, Nakamura MT, Dyck DJ, Mutch DM (2019) Reduced delta-6 desaturase activity partially protects against high-fat diet-induced impairment in whole-body glucose tolerance. J Nutr Biochem 67:173–181. https://doi.org/10.1016/j.jnutbio.2019.02.005

    Article  CAS  PubMed  Google Scholar 

  43. Monk JM, Liddle DM, Cohen DJ, Tsang DH, Hillyer LM, Abdelmagid SA, Nakamura MT, Power KA, Ma DW, Robinson LE (2016) The delta 6 desaturase knock out mouse reveals that immunomodulatory effects of essential n-6 and n-3 polyunsaturated fatty acids are both independent of and dependent upon conversion. J Nutr Biochem 32:29–38. https://doi.org/10.1016/j.jnutbio.2016.01.004

    Article  CAS  PubMed  Google Scholar 

  44. Suitor K, Payne GW, Sarr O, Abdelmagid S, Nakamura MT, Ma DW, Mutch DM (2017) Neither linoleic acid nor arachidonic acid promote white adipose tissue inflammation in Fads2-/- mice fed low fat diets. Prostaglandins Leukot Essent Fat Acids 126:84–91. https://doi.org/10.1016/j.plefa.2017.09.008

    Article  CAS  Google Scholar 

  45. Lankinen MA, Fauland A, Shimizu BI, Agren J, Wheelock CE, Laakso M, Schwab U, Pihlajamaki J (2019) Inflammatory response to dietary linoleic acid depends on FADS1 genotype. Am J Clin Nutr 109(1):165–175. https://doi.org/10.1093/ajcn/nqy287

    Article  PubMed  Google Scholar 

  46. Miyamoto J, Mizukure T, Park SB, Kishino S, Kimura I, Hirano K, Bergamo P, Rossi M, Suzuki T, Arita M, Ogawa J, Tanabe S (2015) A gut microbial metabolite of linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, ameliorates intestinal epithelial barrier impairment partially via GPR40-MEK-ERK pathway. J Biol Chem 290(5):2902–2918. https://doi.org/10.1074/jbc.M114.610733

    Article  CAS  PubMed  Google Scholar 

  47. Fang IM, Yang CH, Yang CM, Chen MS (2007) Linoleic acid-induced expression of inducible nitric oxide synthase and cyclooxygenase II via p42/44 mitogen-activated protein kinase and nuclear factor-kappaB pathway in retinal pigment epithelial cells. Exp Eye Res 85(5):667–677. https://doi.org/10.1016/j.exer.2007.07.021

    Article  CAS  PubMed  Google Scholar 

  48. Fang IM, Yang CH, Yang CM, Chen MS (2009) Comparative effects of fatty acids on proinflammatory gene cyclooxygenase 2 and inducible nitric oxide synthase expression in retinal pigment epithelial cells. Mol Nutr Food Res 53(6):739–750. https://doi.org/10.1002/mnfr.200800220

    Article  CAS  PubMed  Google Scholar 

  49. Fang IM, Yang CH, Yang CM (2014) Docosahexaenoic acid reduces linoleic acid induced monocyte chemoattractant protein-1 expression via PPARgamma and nuclear factor-kappaB pathway in retinal pigment epithelial cells. Mol Nutr Food Res 58(10):2053–2065. https://doi.org/10.1002/mnfr.201400196

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by National Natural Science Foundation Key Program (81930023), Natural Science Foundation Major International (Regional) Joint Research Project (81720108009), Chongqing Outstanding Scientists Project (2019) , Chongqing Key Laboratory of Ophthalmology (CSTC, 2008CA5003), Chongqing Science & Technology Platform and Base Construction Program (cstc2014pt-sy10002) and the Chongqing Chief Medical Scientist Project (2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peizeng Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study adhered to the Declaration of Helsinki and was approved by the First Affiliated Hospital of Chongqing Medical University Ethics Research Committee. Informed consent was obtained from all subjects enrolled.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 747 kb)

ESM 2

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Yi, S., Hu, J. et al. Linoleic acid inhibits in vitro function of human and murine dendritic cells, CD4+T cells and retinal pigment epithelial cells. Graefes Arch Clin Exp Ophthalmol 259, 987–998 (2021). https://doi.org/10.1007/s00417-020-04972-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-020-04972-6

Keywords

Navigation