Skip to main content

Advertisement

Log in

Etanercept as a TNF-alpha inhibitor depresses experimental retinal neovascularization

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The formation of retinal neovascularization (RNV) is the primary pathological process underlying retinopathy of prematurity (ROP). Previous studies have shown that inflammatory factors are related to the formation of RNV. Tumor necrosis factor-α (TNF-α), as an important factor in the inflammatory response, is involved in the regulation of RNV formation. However, the mechanism through which TNF-α inhibition reduces RNV formation is not fully clarified. Therefore, the purpose of this study was to explore the effect of etanercept, an inhibitor of TNF-α, on RNV, and its possible mechanism.

Methods

In vivo, an oxygen-induced retinopathy (OIR) mouse model was used to determine the effect of etanercept on the formation of RNV by performing immunostaining. The effect of etanercept on tumor necrosis factor receptor-associated factor 2 (TRAF2), pro-angiogenic-related factors, and pro/anti-inflammatory factors in OIR mice was assessed by real-time PCR and Western blotting. In vitro, the effect of etanercept on TNF-α-induced human retinal microvascular endothelial cell tube formation was evaluated by tube formation assays, and the potential mechanism of etanercept was explored by Western blotting.

Results

In vivo, etanercept reduced the area of RNV and decreased the expression of TRAF2 in the OIR mouse model. Etanercept also suppressed the expression of several pro-angiogenic factors and regulated the pro/anti-inflammatory factors. In vitro, etanercept reduced endothelial cell tube formation by inhibiting activation of the NF-κB signaling pathway.

Conclusion

Etanercept can regulate pro/anti-inflammatory factors and reduce the expression of pro-angiogenic factors by inhibiting NF-κB phosphorylation, thereby reducing RNV formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rivera JC, Rabah D, Baraa N et al (2017) Ischemic retinopathies: oxidative stress and inflammation. Oxidative Med Cell Longev 2017:1–16. https://doi.org/10.1155/2017/3940241

    Article  CAS  Google Scholar 

  2. Hoppe G, Yoon S, Gopalan B et al (2016) Comparative systems pharmacology of HIF stabilization in the prevention of retinopathy of prematurity. Proc Natl Acad Sci U S A 113(18):2516–2525. https://doi.org/10.1073/pnas.1523005113

    Article  CAS  Google Scholar 

  3. Bancalari A, Schade R (2020, 2020) Update in the treatment of retinopathy of prematurity. Am J Perinatol. https://doi.org/10.1055/s-0040-1713181

  4. Morin J, Luu TM, Superstein R et al (2016) Neurodevelopmental outcomes following bevacizumab injections for retinopathy of prematurity. Pediatrics 137(4). https://doi.org/10.1542/peds.2015-3218

  5. Cabral T, Mello LGM, Lima LH et al (2017) Retinal and choroidal angiogenesis: a review of new targets. Int J Retina Vitreous 3(1):31. https://doi.org/10.1186/s40942-017-0084-9

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tremblay S, Miloudi K, Chaychi S et al (2013) Systemic inflammation perturbs developmental retinal angiogenesis and neuroretinal function. Invest Ophthalmol Vis Sci 54(13):8125–8139. https://doi.org/10.1167/iovs.13-12496

    Article  CAS  PubMed  Google Scholar 

  7. Nandgaonkar BN, Rotschild T, Yu K et al (1999) Indomethacin improves oxygen-induced retinopathy in the mouse. Pediatr Res 46:184–188. https://doi.org/10.1203/00006450-199908000-00010

    Article  CAS  PubMed  Google Scholar 

  8. Yossuck P, Yan Y, Tadesse M et al (2001) Dexamethasone alters TNF-alpha expression in retinopathy. Mol Genet Metab 72:164–167. https://doi.org/10.1006/mgme.2000.3124

    Article  CAS  PubMed  Google Scholar 

  9. Sharma J, Barr SM, Yixun G et al (2003) Ibuprofen improves oxygen-induced retinopathy in a mouse model. Curr Eye Res 27(5):309–314. https://doi.org/10.1076/ceyr.27.5.309.17222

    Article  PubMed  Google Scholar 

  10. Wilkinson-Berka Jennifer L, Alousis Nicole S, Kelly Darren J et al (2003) COX-2 inhibition and retinal angiogenesis in a mouse model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 44(3):974–979. https://doi.org/10.1167/iovs.02-0392

    Article  CAS  PubMed  Google Scholar 

  11. Takahashi K, Saishin Y, Mori K et al (2003) Topical nepafenac inhibits ocular neovascularization. Invest Ophthalmol Vis Sci 44:409–415. https://doi.org/10.1167/iovs.02-0346

    Article  PubMed  Google Scholar 

  12. Yoshida S, Yoshida A, Ishibashi T (2004) Induction of IL-8, MCP-1, and bFGF by TNF-alpha in retinal glial cells: implications for retinal neovascularization during post-ischemic inflammation. Graefes Arch Clin Exp Ophthalmol 242:409–413. https://doi.org/10.1007/s00417-004-0874-2

    Article  CAS  PubMed  Google Scholar 

  13. Kociok N, Radetzky S, Krohne TU et al (2006) Pathological but not physiological retinal neovascularization is altered in TNF-Rp55-receptor–deficient mice. Invest Ophthalmol Vis Sci 47(11). https://doi.org/10.1167/iovs.06-0407

  14. Limb GA, Hollifield RD, Webster L et al (2001) Soluble TNF receptors in vitreoretinal proliferative disease. Invest Ophthalmol Vis Sci 42:1586–1591

    CAS  PubMed  Google Scholar 

  15. Mezu-Ndubuisi OJ, Wanek J, Chau FY et al (2014) Correspondence of retinal thinning and vasculopathy in mice with oxygen-induced retinopathy. Exp Eye Res 122:119–122. https://doi.org/10.1016/j.exer.2014.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Padilla-Mart EM, Romero SC, Bello-Gualtero JM et al (2019) Drug levels and antibodies against TNF-blockers in spondyloarthritis and rheumatoid arthritis are associated with the activity but they do not predict it. Curr Rheumatol Rev 15:329–335

    Article  Google Scholar 

  17. D'Adamio S, Silvaggio D, Massaro A et al (2019) Pharmacotherapeutic management of psoriasis in adolescents and children. Expert Opin Pharmacother 20:1777–1785. https://doi.org/10.1080/14656566.2019.1636032

    Article  CAS  PubMed  Google Scholar 

  18. Bartalena L (2014) Commentary: rituximab, adalimumab, etanercept, tocilizumab--are biologics the future for Graves' orbitopathy? Ophthalmic Plast Reconstr Surg 30:420–423. https://doi.org/10.1097/IOP.0000000000000221

    Article  PubMed  Google Scholar 

  19. Schwartzman S (2016) Advancements in the management of uveitis. Best Pract Res Clin Rheumatol 30:304–315. https://doi.org/10.1016/j.berh.2016.07.005

    Article  PubMed  Google Scholar 

  20. Lim H, Lee SH, Lee HT et al (2018) Structural biology of the TNFα antagonists used in the treatment of rheumatoid arthritis. Int J Mol Sci 19:768. https://doi.org/10.3390/ijms19030768

    Article  CAS  PubMed Central  Google Scholar 

  21. Shen J, Xie B, Dong A et al (2007) Campochiaro PA. In vivo immunostaining demonstrates macrophages associate with growing and regressing vessels. Invest Ophthalmol Vis Sci 48:4335–4341. https://doi.org/10.1167/iovs.07-0113

    Article  PubMed  Google Scholar 

  22. Zhu Y, Tan W, Demetriades Anna M et al (2016) Interleukin-17A neutralization alleviated ocular neovascularization by promoting M2 and mitigating M1 macrophage polarization. Immunology 147:414–428. https://doi.org/10.1111/imm.12571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cai Y, Tan W, Shen X et al (2016) Neutralization of IL-23 depresses experimental ocular neovascularization. Exp Eye Res 146:242–251. https://doi.org/10.1016/j.exer.2016.02.008

    Article  CAS  PubMed  Google Scholar 

  24. Yang F, Bai Y, Jiang Y (2015) Effects of Apelin on RAW264.7 cells under both normal and hypoxic conditions. Peptides 69:133–143. https://doi.org/10.1016/j.peptides.2015.04.025

    Article  CAS  PubMed  Google Scholar 

  25. Shirasawa M, Sonoda S, Terasaki H et al (2013) TNF-α disrupts morphologic and functional barrier properties of polarized retinal pigment epithelium. Exp Eye Res 110:59–69. https://doi.org/10.1016/j.exer.2013.02.012

    Article  CAS  PubMed  Google Scholar 

  26. Park SY, Lee SW, Kim HY et al (2015) HMGB1 induces angiogenesis in rheumatoid arthritis via HIF-1α activation. Eur J Immunol 45:1216–1227. https://doi.org/10.1002/eji.201444908

    Article  CAS  PubMed  Google Scholar 

  27. Hassett B, Singh E, Mahgoub E et al (2018) Manufacturing history of etanercept (Enbrel): consistency of product quality through major process revisions. MAbs 10:159–165. https://doi.org/10.1080/19420862.2017.1388483

    Article  CAS  PubMed  Google Scholar 

  28. Fisher BA, Donatien P, Filer A et al (2016) Decrease in articular hypoxia and synovial blood flow at early time points following infliximab and etanercept treatment in rheumatoid arthritis. Clin. Exp Rheumatol 34:1072–1076

    Google Scholar 

  29. Leblond A, Allanore Y, Avouac J (2017) Targeting synovial neoangiogenesis in rheumatoid arthritis. Autoimmun Rev 16:594–601. https://doi.org/10.1016/j.autrev.2017.04.005

    Article  PubMed  Google Scholar 

  30. Bradley JR (2008) TNF-Mediated inflammatory disease. J Pathol 214(2):149–160. https://doi.org/10.1002/path.2287

    Article  CAS  PubMed  Google Scholar 

  31. Baud V, Karin M (2001) Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 11:372–377. https://doi.org/10.1016/s0962-8924(01)02064-5

    Article  CAS  PubMed  Google Scholar 

  32. MacEwan DJ (2002) TNF ligands and receptors-a matter of life and death. Br J Pharmacol 135(4):855–875. https://doi.org/10.1038/sj.bjp.0704549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xie P (2013) TRAF molecules in cell signaling and in human diseases. J Mol Signal 8(1):1–31. https://doi.org/10.1186/1750-2187-8-7

    Article  CAS  Google Scholar 

  34. Chung JY, Park YC, Ye H et al (2002) All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J Cell Sci 115(Pt 4):679–688

    CAS  PubMed  Google Scholar 

  35. Yang XD, Sun SC (2015) Targeting signaling factors for degradation, an emerging mechanism for TRAF functions. Immunol Rev 266(1):56–71. https://doi.org/10.1111/imr.12311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rossi AFT, Contiero JC, Manoel-Caetano FS et al (2019) Up-regulation of tumor necrosis factor-α pathway survival genes and of the receptor TNFR2 in gastric cancer. World J Gastrointest Oncol 11:281–294. https://doi.org/10.4251/wjgo.v11.i4.281

    Article  PubMed  PubMed Central  Google Scholar 

  37. Qiao YQ, Shen J, Gu Y et al (2013) Gene expression of tumor necrosis factor receptor associated-factor (TRAF)-1 and TRAF-2 in inflammatory bowel disease. J Dig Dis 14:244–250. https://doi.org/10.1111/1751-2980.12044

    Article  CAS  PubMed  Google Scholar 

  38. Romano S, D'Arrigo P, Tufano M et al (2019) TRAF2 and FKBP51 as possible markers for identification of suitable melanoma tumors for tumor necrosis factor-α inhibition. Melanoma Res 29:145–150. https://doi.org/10.1097/CMR.0000000000000553

    Article  CAS  PubMed  Google Scholar 

  39. Zhang W, Sun Y, Liu L et al (2017) Prognostic significance of TNFR-associated factor 1 and 2 (TRAF1 and TRAF2) in glioblastoma. Med Sci Monit 23:4506–4512. https://doi.org/10.12659/msm.903397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sato T, Kusaka S, Hashida N et al (2009) Comprehensive gene-expression profile in murine oxygen-induced retinopathy. Br J Ophthalmol 93(1):96–103. https://doi.org/10.1136/bjo.2008.142646

    Article  CAS  PubMed  Google Scholar 

  41. Brockhaus M, Schoenfeld HJ, Schlaeger EJ et al (1990) Identification of two types of tumor necrosis factor receptors on human cell lines by monoclonal antibodies. Proc Natl Acad Sci U S A 87:3127–3131. https://doi.org/10.1073/pnas.87.8.3127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bradley JR, Thiru S, Pober JS (1995) Disparate localization of 55-kd and 75-kd tumor necrosis factor receptors in human endothelial cells. Am J Pathol 146:27–32

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sato T, Kusaka S, Shimojo H et al (2009) Simultaneous analyses of vitreous levels of 27 cytokines in eyes with retinopathy of prematurity. Ophthalmology 116:2165–2169. https://doi.org/10.1016/j.ophtha.2009.04.026

    Article  PubMed  Google Scholar 

  44. Kataoka K, Nishiguchi KM, Kaneko H et al (2011) The roles of vitreal macrophages and circulating leukocytes in retinal neovascularization. Invest Ophthalmol Vis Sci 52:1431–1438. https://doi.org/10.1167/iovs.10-5798

    Article  CAS  PubMed  Google Scholar 

  45. Suganuma M, Okabe S, Marino MW et al (1999) Essential role of tumor necrosis factor alpha (TNF-alpha) in tumor promotion as revealed by TNF-alpha-deficient mice. Cancer Res 59:4516–4518

    CAS  PubMed  Google Scholar 

  46. Zhu XY, Daghini E, Chade AR et al (2008) Disparate effects of simvastatin on angiogenesis during hypoxia and inflammation. Life Sci 83:801–809. https://doi.org/10.1016/j.lfs.2008.09.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Leibovich SJ, Polverini PJ, Shepard HM et al (1987) Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature 329:630–632. https://doi.org/10.1038/329630a0

    Article  CAS  PubMed  Google Scholar 

  48. Balkwill F (2009) Tumour necrosis factor and cancer. Nat Rev Cancer 9(5):361–371. https://doi.org/10.1016/0955-2235(92)90027-f

    Article  CAS  PubMed  Google Scholar 

  49. Aggarwal BB, Shishodia S, Sandur SK et al (2006) Inflammation and cancer: how hot is the link? Biochem Pharmacol 72(11):1605–1621. https://doi.org/10.1016/j.bcp.2006.06.029

    Article  CAS  PubMed  Google Scholar 

  50. Tang SC, Liao PY, Hung SJ et al (2017) Topical application of glycolic acid suppresses the UVB induced IL-6, IL-8, MCP-1 and COX-2 inflammation by modulating NF-κB signaling pathway in keratinocytes and mice skin. J Dermatol Sci 86:238–248. https://doi.org/10.1016/j.jdermsci.2017.03.004

    Article  CAS  PubMed  Google Scholar 

  51. Sun WX, Liu Y, Zhou W et al (2017) Shikonin inhibits TNF-α production through suppressing PKC-NF-κB-dependent decrease of IL-10 in rheumatoid arthritis-like cell model. J Nat Med 71:349–356. https://doi.org/10.1007/s11418-016-1064-3

    Article  CAS  PubMed  Google Scholar 

  52. Kim H, Koh G (2000) Lipopolysaccharide activates matrix metalloproteinase-2 in endothelial cells through an NF-kappaB-dependent pathway. Biochem Biophys Res Commun 269:401–405. https://doi.org/10.1006/bbrc.2000.2308

    Article  CAS  PubMed  Google Scholar 

  53. Kowluru RA, Santos JM, Zhong Q (2014) Sirt1, a negative regulator of matrix metalloproteinase-9 in diabetic retinopathy. Invest Ophthalmol Vis Sci 55:5653–5660. https://doi.org/10.1167/iovs.14-14874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sapieha P, Hamel D, Shao Z et al (2010) Proliferative retinopathies: angiogenesis that blinds. Int J Biochem Cell Biol 42:5–12. https://doi.org/10.1016/j.biocel.2009.10.006

    Article  CAS  PubMed  Google Scholar 

  55. Goukassian DA, Qin G, Dolan C et al (2007) Tumor necrosis factor-alpha receptor p75 is required in ischemia-induced neovascularization. Circulation 115:752–762. https://doi.org/10.1161/CIRCULATIONAHA.106.647255

    Article  CAS  PubMed  Google Scholar 

  56. Parra JL, Buxade M, Proud CG (2005) Features of the catalytic domains and C termini of the MAPK signal-integrating kinases Mnk1 and Mnk2 determine their differing activities and regulatory properties. J Biol Chem 280:37623–37633. https://doi.org/10.1074/jbc.M508356200

    Article  CAS  PubMed  Google Scholar 

  57. Horiuchi T, Mitoma H, Harashima S et al (2010) Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents. Rheumatology (Oxford) 49:1215–1228. https://doi.org/10.1093/rheumatology/keq031

    Article  CAS  Google Scholar 

  58. Eissner G, Kolch W, Scheurich P (2004) Ligands working as receptors: reverse signaling by members of the TNF superfamily enhance the plasticity of the immune system. Cytokine Growth Factor Rev 15:353–366. https://doi.org/10.1016/j.cytogfr.2004.03.011

    Article  CAS  PubMed  Google Scholar 

  59. Su T, Zhong Y, Demetriades AM et al (2018) Endocan blockade suppresses experimental ocular neovascularization in mice. Invest Ophthalmol Vis Sci 59:930–939. https://doi.org/10.1167/iovs.17-22945

    Article  CAS  PubMed  Google Scholar 

  60. Coffelt SB, Hughes R, Lewis CE (2009) Tumor-associated macrophages: effectors of angiogenesis and tumor progression. Biochim Biophys Acta 1796(1):11–18. https://doi.org/10.1016/j.bbcan.2009.02.004

    Article  CAS  PubMed  Google Scholar 

  61. Madan A, Penn JS (2003) Animal models of oxygen-induced retinopathy. Front Biosci 8:d1030–d1043. https://doi.org/10.2741/1056

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors appreciate Shanghai Burn Research Institute for providing us with experimental facilities and the site.

Funding

Source of support: supported by the National Natural Science Foundation of China (No. 81570853).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Bing Xie and Xi Shen; methodology: Yixuan Yao, Cai Yujuan, Ailing Sui; formal analysis and investigation: Yixuan Yao; writing - original draft preparation: Yixuan Yao; writing - review and editing: Yixuan Yao, Yiyun Yao, Ting Su and Yanji Zhu; funding acquisition: Bing Xie.

Corresponding authors

Correspondence to Bing Xie or Xi Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Animal models and ethical approval

All animal-related procedures described here were in accordance with the National Institutes of Health Guide for the Use and Care of Laboratory Animals. The experiment protocol was approved by the Animal Care and Use Committee of Shanghai Jiao Tong University School of Medicine. Animals used in this study were specific pathogen-free C57BL/6 mice. We ensured to minimize animal suffering and the number of animals used.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Cai, Y., Sui, A. et al. Etanercept as a TNF-alpha inhibitor depresses experimental retinal neovascularization. Graefes Arch Clin Exp Ophthalmol 259, 661–671 (2021). https://doi.org/10.1007/s00417-020-04956-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-020-04956-6

Keywords

Navigation