Skip to main content

Advertisement

Log in

Clinically useful smartphone ophthalmic imaging techniques

  • Review Article
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 17 January 2023

Abstract

Imaging devices in ophthalmology are numerous, and most of them are sophisticated and specialized for specific regions of the eye. In addition, these are fixed and involve close interaction of the patient and the examiner; therefore, simple, portable and tele facility–imbibed imaging tools can be considered optimal alternatives to routine exercises. In the last 10 years, utility of smartphones in ophthalmology is being continuously explored to unearth their potential benefits. In this direction, a smartphone device with/without simple attachments has been noted to aid in detailed, high-quality imaging of the ocular adnexa, cornea, angle, iris, lens, optic disc, and the retina including its periphery. In addition, such utility has also been extended in strabismology workup and intraocular pressure measurements. Hence, using these clinician friendly tools and techniques or by devising newer and more comprehensive tool kits, ophthalmic care can be well-managed with apt use of technology. Also, the smartphone companies are encouraged to collaborate with the medical experts to endeavor more, and help and serve the people better.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bifolck E, Fink A, Pedersen D, Gregory T (2018) Smartphone imaging for the ophthalmic examination in primary care. JAAPA Off J Am Acad Physician Assist 31:34–38

    Google Scholar 

  2. Collon S, Chang D, Tabin G et al (2020) Utility and feasibility of teleophthalmology using a smartphone-based ophthalmic camera in screening camps in Nepal. Asia-Pac J Ophthalmol Phila Pa 9:54–58

    Article  Google Scholar 

  3. Lord RK, Shah VA, San Filippo AN et al (2010) Novel uses of smartphones in ophthalmology. Ophthalmology 117:1274–1274.e3

    Article  Google Scholar 

  4. Hogarty DT, Hogarty JP, Hewitt AW (2020) Smartphone use in ophthalmology: what is their place in clinical practice? Surv Ophthalmol 65(2):250–262

    Article  Google Scholar 

  5. Chhablani J, Kaja S, Shah VA (2012) Smartphones in ophthalmology. Indian J Ophthalmol 60:127–131

    Article  Google Scholar 

  6. Zvornicanin E, Zvornicanin J, Hadziefendic B (2014) The use of smart phones in ophthalmology. Acta Inform Medica 22:206–209

    Article  Google Scholar 

  7. Barsam A, Bhogal M, Morris S et al (2010) Anterior segment slitlamp photography using the iPhone. J Cataract Refract Surg 36:1240–1241

    Article  Google Scholar 

  8. Mohammadpour M, Mohammadpour L, Hassanzad M (2016) Smartphone assisted slit lamp free anterior segment imaging: a novel technique in teleophthalmology. Contact Lens Anterior Eye J Br Contact Lens Assoc 39:80–81

    Article  Google Scholar 

  9. Kaya A (2017) Ophthoselfie Detailed Self-imaging of Cornea and Anterior Segment by Smartphone. Turk J Ophthalmol. 47:130–132

    Article  Google Scholar 

  10. Pujari A, Mukhija R, Singh AB et al (2018) Smartphone-based high definition anterior segment photography. Indian J Ophthalmol. 66:1375

    Article  Google Scholar 

  11. Bhatter P, Cao L, Crochetiere A et al (2020) Using a macro LENS for anterior segment imaging in rural Panama. Telemed J E-Health Off J Am Telemed Assoc.Feb:7. https://doi.org/10.1089/tmj.2019.0152

  12. Sihota R, Kamble N, Sharma AK et al (2019) “Van Herick Plus”: a modified grading scheme for the assessment of peripheral anterior chamber depth and angle. Br J Ophthalmol. 103:960–965

    Article  Google Scholar 

  13. Pujari A, Selvan H, Asif MI et al (2019) Smartphone-aided quantification of iridocorneal angle. J Glaucoma. 28:e153–e155

    Article  Google Scholar 

  14. Kumar N, Francesco B, Sharma A (2019) Smartphone-based Gonio-imaging: a novel addition to Glaucoma screening tools. J Glaucoma. 28:e149–e150

    Article  Google Scholar 

  15. Pujari A, Behera AK, Agarwal D et al (2020) A new technique of iPhone 11 Pro Max smartphone aided angle video and standstill image documentation. J Glaucoma 29(5):e28–e30

    Article  Google Scholar 

  16. Sharma P, Thanikachalam S, Kedar S et al (2008) Evaluation of subjective and objective cyclodeviation following oblique muscle weakening procedures. Indian J Ophthalmol. 56:39–43

    Article  Google Scholar 

  17. Pujari A, Mukhija R, Phuljhele S (2019). Quantification of change in iris torsion using a smartphone. Ophthalmology.126:126

  18. Pujari A, Phuljhele S, Sharma P (2019) Quantification of retinal torsion in strabismus using a smartphone. Ophthalmol Retina. 3:379

    Article  Google Scholar 

  19. McAnany JJ, Smith BM, Garland A et al (2018) iPhone-based pupillometry: a novel approach for assessing the pupillary light reflex. Optom Vis Sci Off Publ am Acad Optom. 95:953–958

    Article  Google Scholar 

  20. Pujari A, Kishore A, Makwana T et al (2019) A simple tool to assess an implantable collamer lens vault. J Cataract Refract Surg. 45:883–884

    Article  Google Scholar 

  21. Teichman JC, Baig K, Ahmed IIK (2014) Simple technique to measure toric intraocular lens alignment and stability using a smartphone. J Cataract Refract Surg. 40:1949–1952

    Article  Google Scholar 

  22. Pujari A, Yadav S, Mukhija R et al (2019) Smartphone-aided technique to quantify toric intraocular lens alignment. J Cataract Refract Surg. 45:1833–1834

    Article  Google Scholar 

  23. Pallas A, Yeo TK, Trevenen M et al (2018) Evaluation of the accuracy of two marking methods and the novel toriCAM application for toric intraocular lens alignment. J Refract Surg. 34:150–155

    Article  Google Scholar 

  24. Arima M, Majima T, Tsukamoto S et al (2019). The utility of a new fundus camera using a portable slit lamp combined with a smartphone

    Book  Google Scholar 

  25. Lai KHW, Lee RPW, Yiu EPF (2018) Ultrawide-field retinal selfie by smartphone, high-definition television, and a novel clip-on lens. Ophthalmology. 125:1027

    Article  Google Scholar 

  26. Toslak D, Ayata A, Liu C et al (2018) Wide-field smartphone fundus video camera based on miniaturized indirect ophthalmoscopy. Retina Phila Pa.38:438. In: Acta Ophthalmol (Copenh).97:e814–6 –41

    Google Scholar 

  27. Bastawrous A (2012) Smartphone fundoscopy. Ophthalmology. 119:432–433.e2

    Article  Google Scholar 

  28. Haddock LJ, Kim DY, Mukai S (2013). Simple, inexpensive technique for high-quality smartphone fundus photography in human and animal eyes. J Ophthalmol.518479.doi: https://doi.org/10.1155/2013/518479

  29. Myung D, Jais A, Lingmin H et al (2014) 3D printed smartphone indirect lens adapter for rapid, high quality retinal imaging. J Mob Technol Med. 3(1):9–15

    Article  Google Scholar 

  30. Sharma A, Subramaniam SD, Ramachandran KI et al (2016) Smartphone-based fundus camera device (MII ret cam) and technique with ability to image peripheral retina. Eur J Ophthalmol. 26:142–144

    Article  CAS  Google Scholar 

  31. Bilong Y, Domngang CN, Nwanlih Gimma G et al (2020) Smartphone-assisted glaucoma screening in patients with type 2 diabetes: a pilot study. Med Hypothesis Discov Innov Ophthalmol J. 9:61–65

    Google Scholar 

  32. Alawa KA, Nolan RP, Han E et al (2019). Low-cost, smartphone-based frequency doubling technology visual field testing using a head-mounted display. British Journal of Ophthalmology. Sep 17.doi: https://doi.org/10.1136/bjophthalmol-2019-314031

  33. Pujari A, Mukhija R, Chawla R et al (2018) Smartphone-based evaluation of the optic nerve head. Indian J Ophthalmol. 66:1617–1618

    Article  Google Scholar 

  34. Maamari RN, Keenan JD, Fletcher DA et al (2014) A mobile phone-based retinal camera for portable wide field imaging. Br J Ophthalmol. 98:438–441

    Article  Google Scholar 

  35. Adam MK, Brady CJ, Flowers AM et al (2015) Quality and diagnostic utility of mydriatic smartphone photography: the smartphone ophthalmoscopy reliability trial. Ophthalmic Surg Lasers Imaging Retina. 46:631–637

    Article  Google Scholar 

  36. Rajalakshmi R, Arulmalar S, Usha M, et al (2015). Validation of smartphone based retinal photography for diabetic retinopathy screening. PloS One. 2015;10(9):e0138285

  37. Prathiba V, Rajalakshmi R, Arulmalar S, et al (2020). Accuracy of the smartphone-based nonmydriatic retinal camera in the detection of sight-threatening diabetic retinopathy. Indian J Ophthalmol68(Suppl 1):S42–S46

  38. Sengupta S, Sindal MD, Baskaran P et al (2019) Sensitivity and specificity of smartphone-based retinal imaging for diabetic retinopathy: a comparative study. Ophthalmol Retina. 3:146–153

    Article  Google Scholar 

  39. Ryan ME, Rajalakshmi R, Prathiba V et al (2015) Comparison among methods of retinopathy assessment (CAMRA) study: smartphone, nonmydriatic, and mydriatic photography. Ophthalmology. 122:2038–2043

    Article  Google Scholar 

  40. Ludwig CA, Murthy SI, Pappuru RR et al (2016) A novel smartphone ophthalmic imaging adapter: user feasibility studies in Hyderabad, India. Indian J Ophthalmol 64(3):191–200

    Article  Google Scholar 

  41. Raju B, Raju NSD, Akkara JD et al (2016) Do it yourself smartphone fundus camera – DIYretCAM. Indian J Ophthalmol. 64:663–667

    Article  Google Scholar 

  42. Sharma A, Goyal A, Bilong Y et al (2019) Comparison of a smartphone-based photography method with indirect ophthalmoscopic assessment in referable retinopathy of prematurity: a smart retinopathy of prematurity model pilot study. Ophthalmol Retina. 3:911–912

    Article  Google Scholar 

  43. Patel TP, Kim TN, Yu G et al (2019) Smartphone-based, rapid, wide-field fundus photography for diagnosis of pediatric retinal diseases. Transl Vis Sci Technol. 8:29

    Article  Google Scholar 

  44. Goyal A, Gopalakrishnan M, Anantharaman G et al (2019) Smartphone guided wide-field imaging for retinopathy of prematurity in neonatal intensive care unit - a smart ROP (SROP) initiative. Indian J Ophthalmol. 67:840–845

    Article  Google Scholar 

  45. Raju B, Raju NSD, Akkara JD et al (2019) Smartphone-based fundus documentation in retinopathy of prematurity. Indian J Ophthalmol. 67:1909

    Article  Google Scholar 

  46. Patel TP, Aaberg MT, Paulus YM et al (2019) Smartphone-based fundus photography for screening of plus-disease retinopathy of prematurity. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. 257:2579–2585

    Article  Google Scholar 

  47. Lekha T, Ramesh S, Sharma A et al (2019) MII RetCam assisted smartphone based fundus imaging for retinopathy of prematurity. Indian J Ophthalmol. 67:834–839

    Article  CAS  Google Scholar 

  48. Xu X, Ding W, Wang X et al (2016) Smartphone-based accurate analysis of retinal vasculature towards point-of-care diagnostics. Sci Rep.04 6:34603

    Article  CAS  Google Scholar 

  49. Suto S, Hiraoka T, Oshika T (2014) Fluorescein fundus angiography with smartphone. Retina 34(1):203–205

    Article  Google Scholar 

  50. Russo A, Morescalchi F, Costagliola C et al (2015) A novel device to exploit the smartphone camera for fundus photography. J Ophthalmol 2015:823139. https://doi.org/10.1155/2015/823139

    Article  Google Scholar 

  51. Russo A, Morescalchi F, Costagliola C et al (2015) Comparison of smartphone ophthalmoscopy with slit-lamp biomicroscopy for grading diabetic retinopathy. American Journal of Ophthalmology 159(2):360–364.e1. https://doi.org/10.1016/j.ajo.2014.11.008

    Article  Google Scholar 

  52. Wintergerst MWM, Brinkmann CK, Holz FG et al (2018) Undilated versus dilated monoscopic smartphone-based fundus photography for optic nerve head evaluation. Sci Rep. 06(8):10228

    Article  Google Scholar 

  53. Kim Y, Chao DL (2019) Comparison of smartphone ophthalmoscopy vs conventional direct ophthalmoscopy as a teaching tool for medical students: the COSMOS study. Clin Ophthalmol Auckl NZ. 13:391–401

    Article  Google Scholar 

  54. Shanmugam PM, Mishra D, Ramanjulu R (2014) Fluorescein fundus angiography using a smartphone. Retina Phila Pa. 34:e6–e7

    Article  Google Scholar 

  55. Shanmugam MP, Mishra DK, Madhukumar R et al (2014) Fundus imaging with a mobile phone: a review of techniques. Indian J Ophthalmol. 62:960–962

    Article  Google Scholar 

  56. Suto S, Hiraoka T, Okamoto Y et al (2014). Photography of anterior eye segment and fundus with smartphone. Nippon Ganka Gakkai Zasshi.118:7–14

  57. Suto S, Hiraoka T, Oshika T (2014) Reply. retina 34(3):e7. https://doi.org/10.1097/iae.0000000000000133

    Article  Google Scholar 

  58. Gunasekera CD, Thomas P (2019) High-resolution direct ophthalmoscopy with an unmodified iPhone X. JAMA Ophthalmol. 137:212–213

    Article  Google Scholar 

  59. Pujari A, Markan A, Chawla R et al (2019) The additional role of unmodified iPhone X as a direct ophthalmoscope. Indian J Ophthalmol. 67:1253–1254

    Article  Google Scholar 

  60. Pujari A, Selvan H, Goel S et al (2019) Smartphone disc photography versus standard stereoscopic disc photography as a teaching tool. J Glaucoma. 28:e109–e111

    Article  Google Scholar 

  61. Pujari A, Selvan H, Goel S et al (2019) Direct smartphone disc video documentation for pediatric glaucomas during evaluation under anesthesia. J Glaucoma. 28:e143–e144

    Article  Google Scholar 

  62. Pujari A, Lomi N, Goel S et al (2019) Unmodified iPhone XS max for fundus montage imaging in cases of retinoblastoma. Indian J Ophthalmol. 67:948–949

    Article  Google Scholar 

  63. Choi CJ, Chou JC, Lefebvre DR et al (2016) Margin reflex distance: differences based on camera and flash positions. Ophthal Plast Reconstr Surg. 32:199–203

    Article  Google Scholar 

  64. Sinha KR, Yeganeh A, Goldberg RA et al (2018) Assessing the accuracy of eyelid measurements utilizing the volk eye check system and clinical measurements. Ophthal Plast Reconstr Surg. 34:346–350

    Article  Google Scholar 

  65. Godfrey KJ, Wilsen C, Satterfield K et al (2019) Analysis of spontaneous eyelid blink dynamics using a 240 frames per second smartphone camera. Ophthal Plast Reconstr Surg. 35:503–505

    Article  Google Scholar 

  66. Ahuja AA, Kohli P, Lomte S (2017) Novel technique of smartphone-based high magnification imaging of the eyelid lesions. Indian J Ophthalmol. 65:1015–1016

    Article  Google Scholar 

  67. Pundlik S, Tomasi M, Liu R et al (2019). Development and preliminary evaluation of a smartphone app for measuring eye alignment. Transl Vis Sci Technol.8;8(1):19. doi: https://doi.org/10.1167/tvst.8.1.19

  68. Phanphruk W, Liu Y, Morley K et al (2019) Validation of StrabisPIX, a mobile application for home measurement of ocular alignment. Transl Vis Sci Technol 8(2):9. https://doi.org/10.1167/tvst.8.2.9

    Article  Google Scholar 

  69. Farah M d L, Santinello M, Carvalho LEM et al (2018) Using a smartphone as a tool to measure compensatory and anomalous head positions. Arq Bras Oftalmol 81(1):30–36

    Article  Google Scholar 

  70. Gupta R, Agrawal S, Srivastava RM et al (2019) Smartphone photography for screening amblyogenic conditions in children. Indian J Ophthalmol. 67:1560–1563

    Article  Google Scholar 

  71. Arnold RW, O’Neil JW, Cooper KL et al (2018) Evaluation of a smartphone photoscreening app to detect refractive amblyopia risk factors in children aged 1-6 years. Clin Ophthalmol Auckl NZ. 12:1533–1537

    Article  Google Scholar 

  72. Asensio-Sánchez VM, Díaz-Cabanas L, Martín-Prieto A (2018) Photoleukocoria with smartphone photographs. Int Med Case Rep J. 11:117–119

    Article  Google Scholar 

  73. Mariakakis A, Wang E, Patel S et al (2016) A smartphone-based system for assessing intraocular pressure. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf2016:4353–4356. https://doi.org/10.1109/EMBC.2016.7591691

Other useful material

  1. https://www.youtube.com/watch?v=5YZd92c7W0Y

  2. https://www.youtube.com/watch?v=xXN-5Yiiey0

  3. https://www.youtube.com/watch?v=jif8Lp6bFy0

  4. https://www.youtube.com/watch?v=whP-t9T_9TY

  5. https://www.youtube.com/watch?v=1ILccrz1P6I

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar Pujari.

Ethics declarations

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Amar Pujari and Gunjan Saluja are contributed equally to this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM1

(MP4 25346 kb)

ESM2

(MP4 76419 kb)

ESM3

(MP4 61601 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pujari, A., Saluja, G., Agarwal, D. et al. Clinically useful smartphone ophthalmic imaging techniques. Graefes Arch Clin Exp Ophthalmol 259, 279–287 (2021). https://doi.org/10.1007/s00417-020-04917-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-020-04917-z

Keywords

Navigation