Skip to main content

Advertisement

Log in

Isolated-check visual evoked potential: a more sensitive tool to detect traumatic optic neuropathy after orbital fracture

  • Trauma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To establish a more sensitive diagnostic tool for traumatic optic neuropathy (TON), we explored the diagnostic efficacy of isolated-check visual evoked potential (ic-VEP) for TON in orbital fracture and compared ic-VEP with pattern-reversal visual evoked potential (P-VEP) testing.

Methods

This was a prospective single-center study. A total of 137 eyes from 131 patients diagnosed between December 2016 and October 2019 with orbital fractures were included in the study. Injury history, best-corrected visual acuity (BCVA), visual field, computed tomography (CT), P-VEP, and ic-VEP data were collected. Parameters of ic-VEP (signal-to-noise ratio [SNR]) and P-VEP (peak latency and amplitude of P100) were compared and diagnostic accuracy was analyzed.

Results

TON was associated with worse BCVA than non-TON (median 0.52 versus 0.10 logMAR, P < 0.001). SNRs were negatively associated with the P100 peak latency while positively associated with the P100 amplitude. The sensitivity of ic-VEP for TON (79.6%) was higher than that of P-VEP (61.2%, P = 0.049), although this difference was not statistically significant after Bonferroni correction. Using ic-VEP and P-VEP together could increase sensitivity (87.8%). Maximum areas under curve were obtained using the SNR criteria of 1.3, 1.47, and 1.54 at 8%, 16%, and 32% depth of modulation, respectively.

Conclusion

ic-VEP was more sensitive than P-VEP in diagnosing TON, and a combination of the two examination tests was recommended. The use of ic-VEP as the new diagnostic standard technique for TON should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Data can be assessed by reasonable requirement by contacting the corresponding author.

References

  1. Atisha DM, Burr T, Allori AC, Puscas L, Erdmann D, Marcus JR (2016) Facial fractures in the aging population. Plast Reconstr Surg 137(2):587–593. https://doi.org/10.1097/01.prs.0000475791.31361.9a

    Article  CAS  PubMed  Google Scholar 

  2. Svider PF, Bobian M, Hojjat H, Sheyn A, Zuliani G, Eloy JA, Folbe AJ (2016) A chilling reminder: pediatric facial trauma from recreational winter activities. Int J Pediatr Otorhinolaryngol 87:78–82. https://doi.org/10.1016/j.ijporl.2016.05.025

    Article  PubMed  Google Scholar 

  3. Bonkowsky VM, Mang WL, Wendl F, Frank C (1989) Neurologic complications in mid-face fractures. Laryngorhinootologie 68(10):539–542. https://doi.org/10.1055/s-2007-998395

    Article  CAS  PubMed  Google Scholar 

  4. McClenaghan FC, Ezra DG, Holmes SB (2011) Mechanisms and management of vision loss following orbital and facial trauma. Curr Opin Ophthalmol 22(5):426–431. https://doi.org/10.1097/ICU.0b013e3283499420

    Article  CAS  PubMed  Google Scholar 

  5. Zimmerer R, Rana M, Schumann P, Gellrich NC (2014) Diagnosis and treatment of optic nerve trauma. Facial Plast Surg 30(5):518–527. https://doi.org/10.1055/s-0034-1393702

    Article  CAS  PubMed  Google Scholar 

  6. Linberg JV (1987) Orbital compartment syndromes following trauma. Adv Ophthalmic Plast Reconstr Surg 6:51–62

    CAS  PubMed  Google Scholar 

  7. Thomas CN, Thompson AM, McCance E, Berry M, Logan A, Blanch RJ, Ahmed Z (2018) Caspase-2 mediates site-specific retinal ganglion cell death after blunt ocular injury. Invest Ophthalmol Vis Sci 59(11):4453–4462. https://doi.org/10.1167/iovs.18-24045

    Article  CAS  PubMed  Google Scholar 

  8. Kashkouli MB, Yousefi S, Nojomi M, Sanjari MS, Pakdel F, Entezari M, Etezad-Razavi M, Razeghinejad MR, Esmaeli M, Shafiee M, Bagheri M (2018) Traumatic optic neuropathy treatment trial (TONTT): open label, phase 3, multicenter, semi-experimental trial. Graefes Arch Clin Exp Ophthalmol 256(1):209–218. https://doi.org/10.1007/s00417-017-3816-5

    Article  PubMed  Google Scholar 

  9. Cook MW, Levin LA, Joseph MP, Pinczower EF (1996) Traumatic optic neuropathy. A meta-analysis. Arch Otolaryngol Head Neck Surg 122(4):389–392. https://doi.org/10.1001/archotol.1996.01890160031006

    Article  CAS  PubMed  Google Scholar 

  10. Tabatabaei SA, Soleimani M, Alizadeh M, Movasat M, Mansoori MR, Alami Z, Foroutan A, Joshaghani M, Safari S, Goldiz A (2011) Predictive value of visual evoked potentials, relative afferent pupillary defect, and orbital fractures in patients with traumatic optic neuropathy. Clin Ophthalmol 5:1021–1026. https://doi.org/10.2147/OPTH.S21409

    Article  PubMed  PubMed Central  Google Scholar 

  11. Merigan WH, Maunsell JH (1993) How parallel are the primate visual pathways? Annual Reviews Inc 16:369–402

    CAS  Google Scholar 

  12. Shapley R, Perry VH (1986) Cat and monkey retinal ganglion cells and their visual functional roles. Trends Neurosci 9:229–235. https://doi.org/10.1016/0166-2236(86)90064-0

    Article  Google Scholar 

  13. Hendry SH, Reid RC (2000) The koniocellular pathway in primate vision. Annu Rev Neurosci 23:127–153. https://doi.org/10.1146/annurev.neuro.23.1.127

    Article  CAS  PubMed  Google Scholar 

  14. Rudvin I, Valberg A, Kilavik BE (2000) Visual evoked potentials and magnocellular and parvocellular segregation. Vis Neurosci 17(4):579–590. https://doi.org/10.1017/s0952523800174085

    Article  CAS  PubMed  Google Scholar 

  15. Derrington AM, Lennie P (1984) Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. J Physiol 357:219–240. https://doi.org/10.1113/jphysiol.1984.sp015498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Tormene AP, Vaegan (2010) ISCEV standard for clinical visual evoked potentials (2009 update). Doc Ophthalmol 120 (1):111-119. doi:https://doi.org/10.1007/s10633-009-9195-4

  17. Busch NA, Debener S, Kranczioch C, Engel AK, Herrmann CS (2004) Size matters: effects of stimulus size, duration and eccentricity on the visual gamma-band response. Clin Neurophysiol 115(8):1810–1820. https://doi.org/10.1016/j.clinph.2004.03.015

    Article  PubMed  Google Scholar 

  18. Azzopardi P, Jones KE, Cowey A (1999) Uneven mapping of magnocellular and parvocellular projections from the lateral geniculate nucleus to the striate cortex in the macaque monkey. Vis Res 39(13):2179–2189. https://doi.org/10.1016/s0042-6989(98)00319-8

    Article  CAS  PubMed  Google Scholar 

  19. Weber AJ, Chen H, Hubbard WC, Kaufman PL (2000) Experimental glaucoma and cell size, density, and number in the primate lateral geniculate nucleus. Invest Ophthalmol Vis Sci 41(6):1370–1379

    CAS  PubMed  Google Scholar 

  20. Ito Y, Shimazawa M, Chen YN, Tsuruma K, Yamashima T, Araie M, Hara H (2009) Morphological changes in the visual pathway induced by experimental glaucoma in Japanese monkeys. Exp Eye Res 89(2):246–255. https://doi.org/10.1016/j.exer.2009.03.013

    Article  CAS  PubMed  Google Scholar 

  21. Zemon V, Tsai JC, Forbes M, Al-Aswad LA, Chen CM, Gordon J, Greenstein VC, Hu G, Strugstad EC, Dhrami-Gavazi E, Jindra LF (2008) Novel electrophysiological instrument for rapid and objective assessment of magnocellular deficits associated with glaucoma. Doc Ophthalmol 117(3):233–243. https://doi.org/10.1007/s10633-008-9129-6

    Article  PubMed  Google Scholar 

  22. Xu LJ, Zhang L, Li SL, Zemon V, Virgili G, Liang YB (2017) Accuracy of isolated-check visual evoked potential technique for diagnosing primary open-angle glaucoma. Doc Ophthalmol 135(2):107–119. https://doi.org/10.1007/s10633-017-9598-6

    Article  PubMed  Google Scholar 

  23. Fan X, Wu LL, Di X, Ding T, Ding AH (2018) Applications of isolated-check visual evoked potential in early stage of open-angle glaucoma patients. Chin Med J 131(20):2439–2446. https://doi.org/10.4103/0366-6999.243564

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen XW, Zhao YX (2017) Comparison of isolated-check visual evoked potential and standard automated perimetry in early glaucoma and high-risk ocular hypertension. Int J Ophthalmol 10 (4):599-604. https://doi.org/10.18240/ijo.2017.04.16

  25. Chen X, Zhao Y (2017) Diagnostic performance of isolated-check visual evoked potential versus retinal ganglion cell-inner plexiform layer analysis in early primary open-angle glaucoma. BMC Ophthalmol 17(1):77. https://doi.org/10.1186/s12886-017-0472-9

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wen W, Zhang P, Liu T, Zhang T, Gao J, Sun X, He S (2015) A novel motion-on-color paradigm for isolating magnocellular pathway function in preperimetric glaucoma. Invest Ophthalmol Vis Sci 56(8):4439–4446. https://doi.org/10.1167/iovs.15-16394

    Article  PubMed  Google Scholar 

  27. Glovinsky Y, Quigley HA, Pease ME (1993) Foveal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci 34(2):395–400

    CAS  PubMed  Google Scholar 

  28. Cox JT, Subburaman GB, Munoz B, Friedman DS, Ravindran RD (2019) Visual acuity outcomes after cataract surgery: high-volume versus low-volume surgeons. Ophthalmology 126(11):1480–1489. https://doi.org/10.1016/j.ophtha.2019.03.033

    Article  PubMed  Google Scholar 

  29. Broyles JM, Jones D, Bellamy J, Elgendy T, Sebai M, Susarla SM, Vaca EE, Tuffaha SH, Manson PN, Dorafshar AH (2015) Pediatric orbital floor fractures: outcome analysis of 72 children with orbital floor fractures. Plast Reconstr Surg 136(4):822–828. https://doi.org/10.1097/PRS.0000000000001613

    Article  CAS  PubMed  Google Scholar 

  30. Sun MT, Wu W, Watanabe A, Kakizaki H, Chen B, Ueda K, Katori N, Takahashi Y, Selva D (2015) Orbital blowout fracture location in Japanese and Chinese patients. Jpn J Ophthalmol 59(1):65–69. https://doi.org/10.1007/s10384-014-0357-x

    Article  PubMed  Google Scholar 

  31. Miller AF, Elman DM, Aronson PL, Kimia AA, Neuman MI (2018) Epidemiology and predictors of orbital fractures in children. Pediatr Emerg Care 34(1):21–24. https://doi.org/10.1097/PEC.0000000000001306

    Article  PubMed  Google Scholar 

  32. de Silva DJ, Rose GE (2011) Orbital blowout fractures and race. Ophthalmology 118(8):1677–1680. https://doi.org/10.1016/j.ophtha.2011.05.001

    Article  PubMed  Google Scholar 

  33. Skottun BC (2014) A few observations on linking VEP responses to the magno- and parvocellular systems by way of contrast-response functions. Int J Psychophysiol 91(3):147–154. https://doi.org/10.1016/j.ijpsycho.2014.01.005

    Article  PubMed  Google Scholar 

  34. Liu SR, Li M, He FL, Li ZK, Fan XQ (2018) Comprehensive evaluation of visual function in patients with orbital fracture by visual electrophysiology and visual field examination. J Craniofac Surg 29(1):188–192. https://doi.org/10.1097/SCS.0000000000004163

    Article  PubMed  Google Scholar 

  35. Tang X, Tzekov R, Passaglia CL (2016) Retinal cross talk in the mammalian visual system. J Neurophysiol 115(6):3018–3029. https://doi.org/10.1152/jn.01137.2015

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are thankful to all the technicians at Peking University Third Hospital for their help in operating the isolated-check visual evoked potential (ic-VEP) and pattern-reversal visual evoked potential (P-VEP) equipment used in this study. They acknowledge the National Science and Technology Major Project for the financial support.

Funding

This study was supported by the Chinese National Science and Technology Major Project (grant number, 2018Z × 10101004).

Author information

Authors and Affiliations

Authors

Contributions

Xuemin Li had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Yanjie Tian, Yinhao Wang, and Xuemin Li contributed to the study concept and design. Yinhao Wang and Ziyuan Liu contributed to the acquisition, analysis, and interpretation of data. Yinhao Wang and Ziyuan Liu drafted the manuscript. All authors contributed to the critical revision of the manuscript for important intellectual content and gave their final approval.

Corresponding author

Correspondence to Xuemin Li.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethics approval

This study was approved by the Peking University Third Hospital (PUTH) Ethics Committee. The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Consent to participate

Informed consent for participation was obtained from all participants in the study.

Consent for publication

Informed consent for publication was obtained from all participants in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 372 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Wang, Y., Liu, Z. et al. Isolated-check visual evoked potential: a more sensitive tool to detect traumatic optic neuropathy after orbital fracture. Graefes Arch Clin Exp Ophthalmol 259, 547–555 (2021). https://doi.org/10.1007/s00417-020-04895-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-020-04895-2

Keywords

Navigation