Intensive care unit time and prolonged enucleation to processing interval are associated with donor cornea contamination



To determine donor cornea contamination rate and to determine factors associated with cornea contamination. To assess the effect of hospitalization, intensive care unit (ICU) time, and antibiotic use on corneal contamination rate. To determine the spectrum of the contaminating microorganisms.


The contamination rate of 212 corneas, obtained by enucleation from April 2014 to January 2015 in a single eye bank, was assessed retrospectively according to age, sex, cause of death, systemic antibiotic use, hospitalization time, ICU time, mechanical ventilation (MV), death to enucleation interval (DEI), enucleation to processing interval (EPI), and corneal epithelial exposure grading. The relative risk (RR) and adjusted RR with a 95% confidence interval were calculated using IBM-SPSS 20.0.


The contamination rate was 35.6% (n = 75). On multivariate analysis, ICU stay of 4 days or longer and enucleation to processing interval (EPI) greater than 7.4 h (RR 1.58, CI 0.96–2.60, P = 0.06) were associated with donor cornea contamination. Corneal contamination risk was highest from 4 to 6 days at the ICU (RR 3.40, CI 1.54–7.51, P < 0.01) and decreased after 7 days (RR 2.22, CI 1.00–4.93, P = 0.05). Coagulase-negative Staphylococcus was the most common isolated bacteria (69.6%). The frequency of gentamicin-resistant bacteria was higher among patients who stayed 4 days or longer at the ICU.


Patients staying at the intensive care unit 4 days or longer showed increased risk of corneal contamination. This is an important result to consider further indication for cornea donation.

This is a preview of subscription content, log in to check access.


  1. 1.

    Hassan SS, Wilhelmus KR (2007) Quality assessment and microbiologic screening of donor corneas. Cornea. 26(8):953–955

    PubMed  Google Scholar 

  2. 2.

    Gavrilov J-C, Borderie VM, Laroche L, Delbosc B (2010) Influencing factors on the suitability of organ-cultured corneas. Eye 24(7):1227–1233

    PubMed  Google Scholar 

  3. 3.

    Fontana L, Errani PG, Zerbinati A, Musacchi Y, Di Pede B, Tassinari G (2007) Frequency of positive donor rim cultures after penetrating keratoplasty using hypothermic and organ-cultured donor corneas. Cornea 26(5):552–556

    PubMed  Google Scholar 

  4. 4.

    Rehany U, Balut G, Lefler E, Rumelt S (2004) The prevalence and risk factors for donor corneal button contamination and its association with ocular infection after transplantation. Cornea. 23(7):649–654

    PubMed  Google Scholar 

  5. 5.

    Hassan SS, Wilhelmus KR, Dahl P et al (2008) Infectious disease risk factors of corneal graft donors. Arch Ophthalmol 126(2):235–239

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Armitage WJ, Jones MNA, Zambrano I, Carley F, Tole DM (2014) The suitability of corneas stored by organ culture for penetrating keratoplasty and influence of donor and recipient factors on 5-year graft survival. Invest Ophthalmol Vis Sci 55:784–791

    PubMed  Google Scholar 

  7. 7.

    Khouani M, Debellemanière G, Malugani C et al (2014) Evaluation of microbial contamination of corneal transplants: one-year report from a French regional eye bank. Cornea 33(9):899–904

    PubMed  Google Scholar 

  8. 8.

    Armitage WJ, Easty DL (1997) Factors influencing the suitability of organ-cultured corneas for transplantation. Invest Ophthalmol Vis Sci 38(1):16–24

    CAS  PubMed  Google Scholar 

  9. 9.

    Robert PY, Camezind P, Drouet M, Ploy MC, Adenis JP (2002) Internal and external contamination of donor corneas before in situ excision: bacterial risk factors in 93 donors. Graefes Arch Clin Exp Ophthalmol 240(4):265–270

    PubMed  Google Scholar 

  10. 10.

    Gruenert AK, Rosenbaum K, Geerling G, Fuchsluger TA (2017) The influence of donor factors on corneal organ culture contamination. Acta Ophthalmol 95(7):733–740

    PubMed  Google Scholar 

  11. 11.

    Hassan SS, Wilhelmus KR (2005) Eye-banking risk factors for fungal endophthalmitis compared with bacterial endopthalmitis after corneal transplantation. Am J Ophthalmol 139(4):685–690

    PubMed  Google Scholar 

  12. 12.

    Builles N, Perraud M, Reverdy ME et al (2006) Reducing contamination when removing and storing corneas: a multidisciplinary, transversal, and environmental approach. Cornea 25(2):185–192

    PubMed  Google Scholar 

  13. 13.

    Oguido APMT, Casella AMB, Hofling-Lima AL et al (2011) Pseudomonas aeruginosa endophthalmitis after penetrating keratoplasty transmitted from the same donor to two recipients confirmed by pulsed-field gel electrophoresis. J Clin Microbiol 49(9):3346–3347

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Kloess PM, Stulting RD, Waring GO III, Wilson LA (1993) Bacterial and fungal endophthalmitis after penetrating keratoplasty. Am J Ophthalmol 115(3):309–316

    CAS  PubMed  Google Scholar 

  15. 15.

    Sutphin JE, Hollis RJ, Wagoner MD (2002) Donor-to-host transmission of candida albicans after corneal transplantation. Am J Ophthalmol 134(1):120–121

    PubMed  Google Scholar 

  16. 16.

    Kitazawa K, Wakimasu K, Yoneda K et al (2017) A case of fungal keratitis and endophthalmitis post penetrating keratoplasty resulting from fungal contamination of the donor cornea. Am J Ophthalmol Case Rep 5:103–106

    PubMed  Google Scholar 

  17. 17.

    Serna-Ojeda JC, Pedro-Aguilar L, Rodriguez-Quintanilla C, Graue-Hernandez EO (2018) Post-keratoplasty endophthalmitis by multidrug-resistant pseudomonas aeruginosa with positive culture of the contralateral donor cornea: a case report. Transplant Proc 50(3):964–966

    CAS  PubMed  Google Scholar 

  18. 18.

    Grzybowski A, Brona P, Kim SJ (2017) Microbial flora and resistance in ophthalmology: a review. Graefes Arch Clin Exp Ophthalmol 255:851–862

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Reddy SC, Paul G (2013) Bacterial flora of conjunctiva after death. Int J Ophthalmol 6(5):632–636

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Sahin A, Yildirim N, Gultekin S et al (2017) Changes in the conjunctival bacterial flora of patients hospitalized in an intensive care unit. Arq Bras Oftalmol 80(1):21–24

    PubMed  Google Scholar 

  21. 21.

    Chen JY, Jones MN, Srinivasan S et al (2015) Endophthalmitis after penetrating keratoplasty. Ophthalmology 122(1):25–30

    CAS  PubMed  Google Scholar 

  22. 22.

    Du DT, Wagoner A, Barone SB et al (2014) Incidence of endophthalmitis after corneal transplant or cataract surgery in a medicare population. Ophthalmology 121(1):290–298

    PubMed  Google Scholar 

  23. 23.

    Taban M, Behrens A, Newcomb RL, Nobe MY, McDonnell PJ (2005) Incidence of acute endophthalmitis following penetrating keratoplasty: a systematic review. Arch Ophthalmol 123(5):605–609

    PubMed  Google Scholar 

  24. 24.

    Edelstein SL, DeMatteo J, Stoeger CG, Macsai MS, Wang CH (2016) Report of the Eye Bank Association of America Medical Review Subcommittee on adverse reactions reported from 2007 to 2014. Cornea 35(7):917–926

    PubMed  Google Scholar 

  25. 25.

    Antonios SR, Cameron JA, Badr IA, Habash NR, Cotter JB (1991) Contamination of donor cornea: postpenetrating keratoplasty endophthalmitis. Cornea 10(3):217–220

    CAS  PubMed  Google Scholar 

  26. 26.

    Cameron JA, Antonios SR, Cotter JB, Habash NR (1991) Endophthalmitis from contaminated donor corneas following penetrating keratoplasty. Arch Ophthalmol 109(1):54–59

    CAS  PubMed  Google Scholar 

  27. 27.

    Aldave AJ, DeMatteo J, Glasser DB et al (2013) Report of the Eye Bank Association of America Medical Advisory Board Subcommittee on fungal infection after corneal transplantation. Cornea 32(2):149–154

    PubMed  Google Scholar 

  28. 28.

    Blanco C, Núñez MX (2010) Endophthalmitis by Pseudomonas aeruginosa after penetrating keratoplasty, case report with an epidemiological investigation. Biomedica 30(3):327–331

    PubMed  Google Scholar 

  29. 29.

    Leveille AS, McMullan D, Cavanagh HD (1983) Endophthalmitis following penetrating keratoplasty. Ophthalmology 90(1):38–39

    CAS  PubMed  Google Scholar 

  30. 30.

    Alharbi SS, Alrajhi A, ALkahtani E (2014) Endophthalmitis following keratoplasty: incidence,microbial profile, visual and structural outcomes. Ocul Immunol Inflamm 22:218–223

    PubMed  Google Scholar 

  31. 31.

    Wilhelmus KR, Hassan SS (2007) The prognostic role of donor corneoescleral rim cultures in corneal transplantation. Ophthalmology 114(3):440–445

    PubMed  Google Scholar 

  32. 32.

    Eifrig CW, Scott IU, Flynn HW, Miller D (2003) Endophthalmitis caused by Pseudomonas aeruginosa. Ophthalmology 110(9):1714–1717

    PubMed  Google Scholar 

  33. 33.

    Shivaramaiah HS, Relhan N, Pathengay A, Mohan N, Flynn HW Jr (2018) Endophthalmitis caused by gram-positive bacteria resistant to vancomycin: clinical settings, causative organisms, antimicrobial susceptibilities, and treatment outcomes. Am J Ophthalmol Case Rep 10:211–214

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Tran KD, Yanuzzi NA, Si N et al (2018) Clinical features, antimicrobial susceptibilities, and treatment outcomes of patients with culture positive endophthalmitis after penetrating keratoplasty. Am J Ophthalmol Case Rep 9:62–67

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Agência Nacional de Vigilância Sanitária (2015) Resolução da Diretoria Colegiada –RDC N° 55, de 11 de dezembro de 2015. Dispõe sobre as boas práticas em tecidos humanos para uso terapêutico. Diário Oficial da República Federativa do Brasil, Brasília. ;238:55–72. Accessed 15 July 2018

  36. 36.

    Al-Tawfiq JA, Tambyah PA (2014) Healthcare associated infections (HAI) perspectives. J Infect Public Health 7(4):339–344

    PubMed  Google Scholar 

  37. 37.

    Vincent JL, RelloJ MJ et al (2009) International study of the prevalence and outcomes of infection in intensive care units. JAMA 302(21):2323–2329

    CAS  Google Scholar 

  38. 38.

    Remschmidt C, Schröder C, Behnke M et al (2018) Continuous increase of vancomycin resistance in enterococci causing nosocomial infections in Germany: 10 years of surveillance. Antimicrob Resist Infect Control 7:54

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Armitage WJ (2011) Preservation of human cornea. Transfus Med Hemother 38(2):143–147

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Eye Bank Association of America (2017) E1.100 Recovery. In: Procedures Manual, June 2017. Washington,DC, pp 32–42 Acessed 10 January 2020

  41. 41.

    Rosenwasser GOD, Nicholson WJ (2003) Introduction to eye banking: a handbook and atlas. A guide to eye bank techniques, corneal evaluation and grading. P.33-40

  42. 42.

    Sousa SJF, Sousa SBF (2018) Eye bank procedures: donor selection criteria. Arq Bras Oftalmol 81(1):73–79

    PubMed  Google Scholar 

  43. 43.

    CLSI (2018) Performance standards for antimicrobial susceptibility testing, 28th ed. Clinical and Laboratory Standards Institute, Wayne Accessed Jan 2018

  44. 44.

    Röck T, Landenberger J, Buhl M et al (2018) Factors influencing the contamination rates of the conjunctival swabs and organ culture media of human donor eyes. Medicine 97(38):1–6

    Google Scholar 

  45. 45.

    Khan HA, Ahmad A, Mehboob R (2015) Nosocomial infections and their control strategies. Asian Pac J Trop Biomed 5(7):509–514

    Google Scholar 

  46. 46.

    Dereli N, Ozayar E, Degerli S, Sahin S, Koç F (2013) Three-year evaluation of nosocomial infection rates of the ICU. Rev Bras Anestesiol 63(1):73–78

    Google Scholar 

  47. 47.

    Cornejo-Juárez P, Vilar-Compte D, Pérez-Jiménez et al (2015) The impact of hospital-acquired infections with multidrug-resistant bacteria in an oncology intensive care unit. Int J Infect Dis 31:31–34

    PubMed  Google Scholar 

  48. 48.

    Oliveira AC, Kovner CT, Silva RS (2010) Nosocomial infection in an intensive care unit in a Brazilian university hospital. Rev Lat Am Enfermagem 18(2):233–239

    PubMed  Google Scholar 

  49. 49.

    Seedor JA, Stulting RD, Epstein RJ et al (1987) Survival of corneal grafts from donors supported by mechanical ventilation. Ophthalmology. 94(2):101–108

    CAS  PubMed  Google Scholar 

  50. 50.

    Karjalainen K, Vannas A (1984) Bacterial contamination of donor corneas. Ophthalmic Surg 15(9):770–772

    CAS  PubMed  Google Scholar 

  51. 51.

    Tandon R, Mehta M, Satpathy G et al (2008) Microbiological profile of donor corneas: a retrospective study from an eye bank in North India. Cornea 27(1):80–87

    PubMed  Google Scholar 

  52. 52.

    Röck D, Wude J, Bartz-Schmidt KU et al (2017) Factors influencing the contamination rate of human organ-cultured corneas. Acta Ophthalmol 95(8):706–702

    Google Scholar 

  53. 53.

    Zanetti E, Bruni A, Mucignat G et al (2005) Bacterial contamination of human organ-cultured corneas. Cornea 24(5):603–607

    PubMed  Google Scholar 

  54. 54.

    Patel HY, Brookes NH, Moffat L et al (2005) The New Zealand National Eye Bank study 1991-2003: a review of the source and management of corneal tissue. Cornea 24(5):576–582

    PubMed  Google Scholar 

  55. 55.

    Li S, Bischoff M, Schirra F et al (2014) Correlation between microbial growth in conjunctival swabs of corneal donors and contamination of organ culture media. Ophthalmologe 111(6):553–559

    CAS  PubMed  Google Scholar 

  56. 56.

    Inomata T, Ono K, Matsuba T et al (2017) Pre-banking microbial contamination of donor conjunctiva and storage medium for penetrating keratoplasty. Jpn J Ophthalmol 61(5):369–377

    CAS  PubMed  Google Scholar 

  57. 57.

    Linke SJ, Fricke OH, Eddy M et al (2013) Risk factors for donor cornea contamination: retrospective analysis of 4546 procured corneas in a single eye bank. Cornea 32(2):141–148

    PubMed  Google Scholar 

  58. 58.

    Röck T, Hofmann J, Thaler S, Bramkamp M, Bartz-Schmidt KU, Yoeruek E et al (2016) Factors that influence the suitability of human organ-cultured corneas. Graefes Arch Clin Exp Ophthalmol 254(1):135–141.

    Article  PubMed  Google Scholar 

  59. 59.

    Albon J, Armstrong M, Tullo AB (2001) Bacterial contamination of human organ-cultured corneas. Cornea 20(3):260–263

    CAS  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Isabella Funfas Bandeira Medina.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (Comitê de Ética em Pesquisa Envolvendo Seres Humanos da Universidade Estadual de Londrina- number 2.150.760) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study, formal consent is not required.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Medina, I.F.B., Oguido, A.P.M.T., Urbano, M.R. et al. Intensive care unit time and prolonged enucleation to processing interval are associated with donor cornea contamination. Graefes Arch Clin Exp Ophthalmol 258, 2241–2249 (2020).

Download citation


  • Cornea
  • Contamination
  • Hospitalization
  • Antibiotics
  • Intensive care unit
  • Keratoplasty