Skip to main content

Advertisement

Log in

Short-term effects of caffeine intake on anterior chamber angle and intraocular pressure in low caffeine consumers

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Acute caffeine consumption causes a transient increase in IOP; however, the mechanisms underlying this phenomenon remain unknown. This study aims to determine the structural changes in cornea and anterior chamber associated with caffeine ingestion.

Methods

Seventeen healthy low caffeine consumers ingested a capsule of caffeine (~ 4 mg/kg) or placebo (300 mg of corn-starch) in a counterbalanced manner. We measured IOP by rebound tonometry and the anterior chamber depth (ACD), anterior chamber volume (ACV), anterior chamber angle (ACA) and central corneal thickness (CCT) with the Pentacam rotating Scheimpflug camera. Subjective feelings of arousal were also obtained. All the dependent variables were obtained before and 30, 60 and 90 min after caffeine/placebo intake.

Results

Caffeine intake caused an acute IOP rise (p = 0.005, η2 = 0.403) and a narrowing ACA (p = 0.028, η2 = 0.266). However, our data did not reveal any effect on CCT, ACD and ACV after caffeine ingestion (p = 0.798, p = 0.346, p = 0.175, respectively). Participants reported greater levels of activation after ingesting caffeine in comparison to placebo (p = 0.037, η2 = 0.245).

Conclusion

The IOP rise associated with caffeine intake may be caused by an ACA reduction, which may add resistance to the outflow of aqueous humour. The current results may be of special relevance for subjects at high risk for glaucoma onset or progression and may help to understand the mechanisms underlying caffeine-induced ocular hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Heckman MA, Weil J, de Mejia EG (2010) Caffeine (1, 3, 7-trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory matters. J Food Sci 75:77–87. https://doi.org/10.1111/j.1750-3841.2010.01561.x

    Article  CAS  Google Scholar 

  2. Grosso G, Micek A, Godos J et al (2016) Coffee consumption and risk of all-cause, cardiovascular, and cancer mortality in smokers and non-smokers: a dose-response meta-analysis. Eur J Epidemiol 31:1191–1205. https://doi.org/10.1007/s10654-016-0202-2

    Article  CAS  PubMed  Google Scholar 

  3. Ferré S (2008) An update on the mechanisms of the psychostimulant effects of caffeine. J Neurochem 105:1067–1079. https://doi.org/10.1111/j.1471-4159.2007.05196.x

    Article  CAS  PubMed  Google Scholar 

  4. Nurminen ML, Niittynen L, Korpela R, Vapaatalo H (1999) Coffee, caffeine and blood pressure: a critical review. Eur J Clin Nutr 53:831–839. https://doi.org/10.1038/sj.ejcn.1600899

    Article  CAS  PubMed  Google Scholar 

  5. Terai N, Spoerl E, Pillunat LE, Stodtmeister R (2012) The effect of caffeine on retinal vessel diameter in young healthy subjects. Acta Ophthalmol 90:524–528. https://doi.org/10.1111/j.1755-3768.2012.02486.x

    Article  CAS  Google Scholar 

  6. Özkan B, Yüksel N, Anik Y et al (2008) The effect of caffeine on retrobulbar hemodynamics. Curr Eye Res 33:804–809. https://doi.org/10.1080/02713680802344708

    Article  CAS  PubMed  Google Scholar 

  7. Vural AD, Kara N, Sayin N et al (2014) Choroidal thickness changes after a single administration of coffee in healthy subjects. Retina 34:1223–1228. https://doi.org/10.1097/IAE.0000000000000043

    Article  CAS  PubMed  Google Scholar 

  8. Dervişoğulları MS, Totan Y, Yüce A, Kulak AE (2016) Acute effects of caffeine on choroidal thickness and ocular pulse amplitude. Cutan Ocul Toxicol 35:281–286. https://doi.org/10.3109/15569527.2015.1104330

    Article  CAS  PubMed  Google Scholar 

  9. Hecht I, Achiron A, Man V, Burgansky-Eliash Z (2017) Modifiable factors in the management of glaucoma: a systematic review of current evidence. Graefes Arch Clin Exp Ophthalmol 255:789–796. https://doi.org/10.1007/s00417-016-3518-4

    Article  PubMed  Google Scholar 

  10. Kang JH, Willett WC, Rosner BA et al (2008) Caffeine consumption and the risk of primary open-angle glaucoma: a prospective cohort study. Investig Ophthalmol Vis Sci 49:1924–1931. https://doi.org/10.1167/iovs.07-1425

    Article  Google Scholar 

  11. Yoon JJ, Danesh-Meyer HV (2019) Caffeine and the eye. Surv Ophthalmol 64:334–344. https://doi.org/10.1016/j.survophthal.2018.10.005

    Article  PubMed  Google Scholar 

  12. Li M, Wang M, Guo W et al (2011) The effect of caffeine on intraocular pressure: a systematic review and meta-analysis. Graefes Arch Clin Exp Ophthalmol 249:435–442. https://doi.org/10.1007/s00417-010-1455-1

    Article  CAS  PubMed  Google Scholar 

  13. Vera J, Redondo B, Molina R et al (2019) Effects of caffeine on intraocular pressure are subject to tolerance: a comparative study between low and high caffeine consumers. Psychopharmacology 236:811–819

    Article  CAS  PubMed  Google Scholar 

  14. Kurata K, Fujimoto H, Tsukuda R et al (1998) Aqueous humor dynamics in beagle dogs with caffeine-induced ocular hypertension. J Vet Med Sci 60:737–739. https://doi.org/10.1292/jvms.60.737

    Article  CAS  PubMed  Google Scholar 

  15. Neufeld AH, Jampol LM, Sears ML (1972) Cyclic-AMP in the aqueous humor: the effects of adrenergic agents. Exp Eye Res 14:242–250. https://doi.org/10.1016/0014-4835(72)90009-7

    Article  CAS  PubMed  Google Scholar 

  16. Adams BA, Brubaker RF (1990) Caffeine has no clinically significant effect on aqueous humor flow in the normal human eye. Ophthalmology 97:1030–1031. https://doi.org/10.1016/S0161-6420(90)32468-5

    Article  CAS  PubMed  Google Scholar 

  17. Ajayi OB, Ukwade MT (2001) Caffeine and intraocular pressure in a Nigerian population. J Glaucoma 10:25–31 https://doi.org/10.1097/00061198-200102000-00006

    Article  CAS  PubMed  Google Scholar 

  18. Kurata K, Maeda M, Nishida E et al (1997) Relationship between caffeine induced ocular hypertension and ultrastructure changes of non pigmented ciliary epithelial cells in rats. J Toxicol Sci 22:447–454

    Article  CAS  PubMed  Google Scholar 

  19. Rabsilber TM, Khoramnia R, Auffarth GU (2006) Anterior chamber measurements using Pentacam rotating Scheimpflug camera. J Cataract Refract Surg 32:456–459. https://doi.org/10.1016/j.jcrs.2005.12.103

    Article  PubMed  Google Scholar 

  20. Dooley I, Charalampidou S, Malik A et al (2010) Changes in intraocular pressure and anterior segment morphometry after uneventful phacoemulsification cataract surgery. Eye 24:519–527. https://doi.org/10.1038/eye.2009.339

    Article  CAS  PubMed  Google Scholar 

  21. Read SA, Collins MJ, Iskander DR (2008) Diurnal variation of axial length, intraocular pressure, and anterior eye biometrics. Investig Ophthalmol Vis Sci 49:2911–2918. https://doi.org/10.1167/iovs.08-1833

    Article  Google Scholar 

  22. Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G*power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191. https://doi.org/10.3758/BF03193146

    Article  PubMed  Google Scholar 

  23. Hoddes E, Zarcone V, Smythe H, Phillips R, Dement W (1972) Quantification of sleepiness; a new approach. Psychophysiology 10:431–436

    Article  Google Scholar 

  24. Pakrou N, Gray T, Mills R et al (2008) Clinical comparison of the Icare tonometer and Goldmann applanation tonometry. J Glaucoma 17:43–47. https://doi.org/10.1097/IJG.0b013e318133fb32

    Article  PubMed  Google Scholar 

  25. Doughty MJ, Zaman ML (2000) Human corneal thickness and its impact on intraocular pressure measures: a review and meta-analysis approach. Surv Ophthalmol 44:367–408. https://doi.org/10.1016/S0039-6257(00)00110-7

    Article  CAS  PubMed  Google Scholar 

  26. Smedowski A, Weglarz B, Tarnawska D et al (2014) Comparison of three intraocular pressure measurement methods including biomechanical properties of the cornea. Investig Ophthalmol Vis Sci 55:666–673. https://doi.org/10.1167/iovs.13-13172

    Article  Google Scholar 

  27. Shankar H, Taranath D, Santhirathelagan CT, Pesudovs K (2008) Anterior segment biometry with the Pentacam: comprehensive assessment of repeatability of automated measurements. J Cataract Refract Surg 34:103–113. https://doi.org/10.1016/j.jcrs.2007.09.013

    Article  PubMed  Google Scholar 

  28. Glade MJ (2010) Caffeine-not just a stimulant. Nutrition 26:932–938. https://doi.org/10.1016/j.nut.2010.08.004

    Article  CAS  PubMed  Google Scholar 

  29. Grosso G, Godos J, Galvano F, Giovannucci EL (2017) Coffee, caffeine, and health outcomes: an umbrella review. Annu Rev Nutr 37:131–156. https://doi.org/10.1146/annurev-nutr-071816-064941

    Article  CAS  PubMed  Google Scholar 

  30. Monika KH, Dariusz T, Hieronim B (2010) Changes in thickness of each layer of developing chicken cornea after administration of caffeine. Folia Histochem Cytobiol 48:273–277. https://doi.org/10.2478/v10042-010-0043-x

    Article  Google Scholar 

  31. Mangouritsas G, Morphis G, Mourtzoukos S, Feretis E (2009) Association between corneal hysteresis and central corneal thickness in glaucomatous and non-glaucomatous eyes. Acta Ophthalmol 87:901–905. https://doi.org/10.1111/j.1755-3768.2008.01370.x

    Article  PubMed  Google Scholar 

  32. Liu J, Roberts CJ (2005) Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. J Cataract Refract Surgery 31:146–155

    Article  Google Scholar 

  33. Elsheikh A, McMonnies CW, Whitford C, Boneham GC (2015) In vivo study of corneal responses to increased intraocular pressure loading. Eye Vis 2:1–10. https://doi.org/10.1186/s40662-015-0029-z

    Article  Google Scholar 

  34. Weinreb RN, Aung T, Medeiros FA (2014) The pathophysiology and treatment of glaucoma. JAMA 311:1901–1911. https://doi.org/10.1001/jama.2014.3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tamm ER (2009) The trabecular meshwork outflow pathways: structural and functional aspects. Exp Eye Res 88:648–655. https://doi.org/10.1016/j.exer.2009.02.007

    Article  CAS  PubMed  Google Scholar 

  36. Nongpiur ME, Ku JYF, Aung T (2011) Angle closure glaucoma: a mechanistic review. Curr Opin Ophthalmol 22:96–101. https://doi.org/10.1097/ICU.0b013e32834372b9

    Article  PubMed  Google Scholar 

  37. Wu RY, Nongpiur ME, He MG et al (2011) Association of narrow angles with anterior chamber area and volume measured with anterior-segment optical coherence tomography. Arch Ophthalmol 129:569–574. https://doi.org/10.1001/archophthalmol.2011.68

    Article  PubMed  Google Scholar 

  38. Leske M, Heijl A, Hussein M et al (2003) Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol 121:48–56. https://doi.org/10.1097/00132578-200310000-00007

    Article  PubMed  Google Scholar 

  39. Dada T, Gadia R, Sharma A et al (2011) Ultrasound biomicroscopy in glaucoma. Surv Ophthalmol 56:433–450. https://doi.org/10.1016/j.survophthal.2011.04.004

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was received for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Vera.

Ethics declarations

Conflict of interest

Beatriz Redondo declares that she has no conflict of interest. Jesus Vera declares that he has no conflict of interest. Ruben Molina declares that he has no conflict of interest. Raimundo Jiménez declares that he has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the University of Granada Institutional Review Board (IRB approval: 438/CEIH/2017) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redondo, B., Vera, J., Molina, R. et al. Short-term effects of caffeine intake on anterior chamber angle and intraocular pressure in low caffeine consumers. Graefes Arch Clin Exp Ophthalmol 258, 613–619 (2020). https://doi.org/10.1007/s00417-019-04556-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-019-04556-z

Keywords

Navigation