Skip to main content

Advertisement

Log in

Focal retinal pigment epithelium atrophy at the location of type 3 neovascularization lesion: a morphologic feature associated with low reactivation rate and favorable prognosis

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the clinical significance of focal retinal pigment epithelium (RPE) atrophy in the eyes with type 3 neovascularization.

Methods

This retrospective study included 184 eyes those were diagnosed with type 3 neovascularization and were treated with antivascular endothelial growth factor (VEGF) therapy. Focal RPE atrophy was defined as a localized RPE atrophy found at the same location as the type 3 lesion. The incidence of reactivation after 3 loading injections and the visual outcomes was compared between a focal RPE atrophy group and a nonfocal RPE atrophy group. In the focal RPE atrophy group, the number of injections was compared between before and after the development of RPE atrophy.

Results

The mean follow-up period was 37.6 ± 18.8 months; focal RPE atrophy developed in 24 eyes (13.0%). Reactivation of the lesion after 3 loading injections was significantly less frequent in the focal RPE atrophy group (58.3%) than that in the nonfocal RPE atrophy group (85.0%) (P = 0.004). In the focal RPE atrophy group, the mean best-corrected visual acuity (BCVA) was 0.68 ± 0.28 (Snellen equivalent = 20/95) at diagnosis and 0.70 ± 0.48 (20/100) at the final follow-up. In the nonfocal RPE atrophy group, the values were 0.75 ± 0.34 (20/112) and 1.12 ± 0.68 (20/263), respectively. The BCVA at the final follow-up was significantly better in the focal RPE atrophy group (P < 0.001). The mean number of injections per year was 4.9 ± 1.8 and 1.3 ± 1.6 before and after the development of focal RPE atrophy, respectively (P < 0.001).

Conclusions

Development of focal RPE atrophy was associated with a low incidence of reactivation of type 3 neovascularization and was therefore predictive of a favorable visual prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Freund KB, Ho IV, Barbazetto IA, Koizumi H, Laud K, Ferrara D, Matsumoto Y, Sorenson JA, Yannuzzi L (2008) Type 3 neovascularization: the expanded spectrum of retinal angiomatous proliferation. Retina 28:201–211

    Article  PubMed  Google Scholar 

  2. Yannuzzi LA, Negrao S, Iida T, Carvalho C, Rodriguez-Coleman H, Slakter J, Freund KB, Sorenson J, Orlock D, Borodoker N (2001) Retinal angiomatous proliferation in age-related macular degeneration. Retina 21:416–434

    Article  CAS  PubMed  Google Scholar 

  3. Bottoni F, Massacesi A, Cigada M, Viola F, Musicco I, Staurenghi G (2005) Treatment of retinal angiomatous proliferation in age-related macular degeneration: a series of 104 cases of retinal angiomatous proliferation. Arch Ophthalmol 123:1644–1650

    Article  PubMed  Google Scholar 

  4. Mrejen S, Jung JJ, Chen C, Patel SN, Gallego-Pinazo R, Yannuzzi N, Xu L, Marsiglia M, Boddu S, Freund KB (2015) Long-term visual outcomes for a treat and extend anti-vascular endothelial growth factor regimen in eyes with neovascular age-related macular degeneration. J Clin Med 4:1380–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Daniel E, Shaffer J, Ying GS, Grunwald JE, Martin DF, Jaffe GJ, Maguire MG (2016) Outcomes in eyes with retinal angiomatous proliferation in the comparison of age-related macular degeneration treatments trials (CATT). Ophthalmology 123:609–616

    Article  PubMed  Google Scholar 

  6. Shin JY, Yu HG (2014) Optical coherence tomography-based ranibizumab monotherapy for retinal angiomatous proliferation in Korean patients. Retina 34:2359–2366

    Article  CAS  PubMed  Google Scholar 

  7. Lai TY, Chan WM, Liu DT, Lam DS (2007) Ranibizumab for retinal angiomatous proliferation in neovascular age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 245:1877–1880

    Article  CAS  PubMed  Google Scholar 

  8. Grunwald JE, Daniel E, Huang J, Ying GS, Maguire MG, Toth CA, Jaffe GJ, Fine SL, Blodi B, Klein ML, Martin AA, Hagstrom SA, Martin DF (2014) Risk of geographic atrophy in the comparison of age-related macular degeneration treatments trials. Ophthalmology 121:150–161

    Article  PubMed  Google Scholar 

  9. Baek J, Lee JH, Kim JY, Kim NH, Lee WK (2016) Geographic atrophy and activity of neovascularization in retinal angiomatous proliferation. Invest Ophthalmol Vis Sci 57:1500–1505

    Article  CAS  PubMed  Google Scholar 

  10. Hata M, Yamashiro K, Oishi A, Ooto S, Tamura H, Miyata M, Ueda-Arakawa N, Kuroda Y, Takahashi A, Tsujikawa A, Yoshimura N (2017) Retinal pigment epithelial atrophy after anti-vascular endothelial growth factor injections for retinal angiomatous proliferation. Retina 37:2069–2077

    Article  CAS  PubMed  Google Scholar 

  11. Xu L, Mrejen S, Jung JJ, Gallego-Pinazo R, Thompson D, Marsiglia M, Freund KB (2015) Geographic atrophy in patients receiving anti-vascular endothelial growth factor for neovascular age-related macular degeneration. Retina 35:176–186

    Article  CAS  PubMed  Google Scholar 

  12. Cho HJ, Yoo SG, Kim HS, Kim JH, Kim CG, Lee TG, Kim JW (2015) Risk factors for geographic atrophy after intravitreal ranibizumab injections for retinal angiomatous proliferation. Am J Ophthalmol 159:285–292 e281

    Article  CAS  PubMed  Google Scholar 

  13. Cho HJ, Lee TG, Han SY, Kim HS, Kim JH, Han JI, Lew YJ, Kim JW (2016) Long-term visual outcome and prognostic factors of intravitreal anti-vascular endothelial growth factor treatment for retinal angiomatous proliferation. Graefes Arch Clin Exp Ophthalmol 254:23–30

    Article  CAS  PubMed  Google Scholar 

  14. Holz FG, Strauss EC, Schmitz-Valckenberg S, van Lookeren Campagne M (2014) Geographic atrophy: clinical features and potential therapeutic approaches. Ophthalmology 121:1079–1091

    Article  PubMed  Google Scholar 

  15. Sadda SR, Guymer R, Holz FG, Schmitz-Valckenberg S, Curcio CA, Bird AC, Blodi BA, Bottoni F, Chakravarthy U, Chew EY, Csaky K, Danis RP, Fleckenstein M, Freund KB, Grunwald J, Hoyng CB, Jaffe GJ, Liakopoulos S, Mones JM, Pauleikhoff D, Rosenfeld PJ, Sarraf D, Spaide RF, Tadayoni R, Tufail A, Wolf S, Staurenghi G (2018) Consensus definition for atrophy associated with age-related macular degeneration on OCT: classification of atrophy report 3. Ophthalmology 125:537–548

    Article  PubMed  Google Scholar 

  16. Mones J, Biarnes M (2018) Geographic atrophy phenotype identification by cluster analysis. Br J Ophthalmol 102:388–392

    Article  PubMed  Google Scholar 

  17. Fleckenstein M, Schmitz-Valckenberg S, Lindner M, Bezatis A, Becker E, Fimmers R, Holz FG (2014) The “diffuse-trickling” fundus autofluorescence phenotype in geographic atrophy. Invest Ophthalmol Vis Sci 55:2911–2920

    Article  PubMed  Google Scholar 

  18. Schmitz-Valckenberg S, Sahel JA, Danis R, Fleckenstein M, Jaffe GJ, Wolf S, Pruente C, Holz FG (2016) Natural history of geographic atrophy progression secondary to age-related macular degeneration (geographic atrophy progression study). Ophthalmology 123:361–368

    Article  PubMed  Google Scholar 

  19. Nagiel A, Sarraf D, Sadda SR, Spaide RF, Jung JJ, Bhavsar KV, Ameri H, Querques G, Freund KB (2015) Type 3 neovascularization: evolution, association with pigment epithelial detachment, and treatment response as revealed by spectral domain optical coherence tomography. Retina 35:638–647

    Article  PubMed  Google Scholar 

  20. Su D, Lin S, Phasukkijwatana N, Chen X, Tan A, Freund KB, Sarraf D (2016) An updated staging system of type 3 neovascularization using spectral domain optical coherence tomography. Retina 36(Suppl 1):S40–S49

    Article  PubMed  Google Scholar 

  21. Holladay JT (2004) Visual acuity measurements. J Cataract Refract Surg 30:287–290

    Article  PubMed  Google Scholar 

  22. Lee JH, Lee MY, Lee WK (2017) Incidence and risk factors of massive subretinal hemorrhage in retinal angiomatous proliferation. PLoS One 12:e0186272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim JH, Chang YS, Kim JW, Kim CG, Lee DW (2018) Early recurrent hemorrhage in submacular hemorrhage secondary to type 3 neovascularization or retinal angiomatous proliferation: incidence and influence on visual prognosis. Semin Ophthalmol 33:820–828

    Article  PubMed  Google Scholar 

  24. Montero JA, Ruiz-Moreno JM, Sanabria MR, Fernandez-Munoz M (2009) Efficacy of intravitreal and periocular triamcinolone associated with photodynamic therapy for treatment of retinal angiomatous proliferation. Br J Ophthalmol 93:166–170

    Article  CAS  PubMed  Google Scholar 

  25. Sutter FK, Kurz-Levin MM, Fleischhauer J, Bosch MM, Barthelmes D, Helbig H (2006) Macular atrophy after combined intravitreal triamcinolone acetonide (IVTA) and photodynamic therapy (PDT) for retinal angiomatous proliferation (RAP). Klin Monatsbl Augenheilkd 223:376–378

    Article  CAS  PubMed  Google Scholar 

  26. McBain VA, Kumari R, Townend J, Lois N (2011) Geographic atrophy in retinal angiomatous proliferation. Retina 31:1043–1052

    Article  PubMed  Google Scholar 

  27. Li M, Dolz-Marco R, Messinger JD, Wang L, Feist RM, Girkin CA, Gattoussi S, Ferrara D, Curcio CA, Freund KB (2018) Clinicopathologic correlation of anti-vascular endothelial growth factor-treated type 3 neovascularization in age-related macular degeneration. Ophthalmology 125:276–287

    Article  PubMed  Google Scholar 

  28. Ang M, Tan ACS, Cheung CMG, Keane PA, Dolz-Marco R, Sng CCA, Schmetterer L (2018) Optical coherence tomography angiography: a review of current and future clinical applications. Graefes Arch Clin Exp Ophthalmol 256:237–245

    Article  PubMed  Google Scholar 

  29. Lindner M, Fang PP, Steinberg JS, Domdei N, Pfau M, Krohne TU, Schmitz-Valckenberg S, Holz FG, Fleckenstein M (2016) OCT angiography-based detection and quantification of the neovascular network in exudative AMD. Invest Ophthalmol Vis Sci 57:6342–6348

    Article  PubMed  Google Scholar 

  30. Kuehlewein L, Dansingani KK, de Carlo TE, Bonini Filho MA, Iafe NA, Lenis TL, Freund KB, Waheed NK, Duker JS, Sadda SR, Sarraf D (2015) Optical coherence tomography angiography of type 3 neovascularization secondary to age-related macular degeneration. Retina 35:2229–2235

    Article  PubMed  Google Scholar 

  31. Abdelfattah NS, Zhang H, Boyer DS, Sadda SR (2016) Progression of macular atrophy in patients with neovascular age-related macular degeneration undergoing antivascular endothelial growth factor therapy. Retina 36:1843–1850

    Article  CAS  PubMed  Google Scholar 

  32. Freund KB, Korobelnik JF, Devenyi R, Framme C, Galic J, Herbert E, Hoerauf H, Lanzetta P, Michels S, Mitchell P, Mones J, Regillo C, Tadayoni R, Talks J, Wolf S (2015) Treat-and-extend regimens with anti-VEGF agents in retinal diseases: a literature review and consensus recommendations. Retina 35:1489–1506

    Article  CAS  PubMed  Google Scholar 

  33. Day S, Acquah K, Lee PP, Mruthyunjaya P, Sloan FA (2011) Medicare costs for neovascular age-related macular degeneration, 1994–2007. Am J Ophthalmol 152:1014–1020

    Article  PubMed  PubMed Central  Google Scholar 

  34. Abdelfattah NS, Al-Sheikh M, Pitetta S, Mousa A, Sadda SR, Wykoff CC (2017) Macular atrophy in neovascular age-related macular degeneration with monthly versus treat-and-extend ranibizumab: findings from the TREX-AMD trial. Ophthalmology 124:215–223

    Article  PubMed  Google Scholar 

  35. Engelbert M, Zweifel SA, Freund KB (2009) “Treat and extend” dosing of intravitreal antivascular endothelial growth factor therapy for type 3 neovascularization/retinal angiomatous proliferation. Retina 29:1424–1431

    Article  PubMed  Google Scholar 

  36. Arendt P, Yu S, Munk MR, Ebneter A, Wolf S, Zinkernagel MS (2019) Exit strategy in a treat-and-extend regimen for exudative age-related macular degeneration. Retina 39:27–33

    Article  PubMed  Google Scholar 

  37. Adrean SD, Chaili S, Ramkumar H, Pirouz A, Grant S (2018) Consistent long-term therapy of neovascular age-related macular degeneration managed by 50 or more anti-VEGF injections using a treat-extend-stop protocol. Ophthalmology 125:1047–1053

    Article  PubMed  Google Scholar 

Download references

Funding

Kim’s Eye Hospital (Seoul, South Korea) provided financial support in the form of funding for English editing support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Hui Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the institutional review board of Kim’s Eye Hospital (Seoul, South Korea). This study was conducted in accordance with the tenets of the Declaration of Helsinki.

Informed consent

Informed consent was not obtained in this study. Identifying information about participants was not presented in this study.

Disclaimer

The sponsor had no role in the design or conduct of this research.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.H., Kim, J.W., Kim, C.G. et al. Focal retinal pigment epithelium atrophy at the location of type 3 neovascularization lesion: a morphologic feature associated with low reactivation rate and favorable prognosis. Graefes Arch Clin Exp Ophthalmol 257, 1661–1669 (2019). https://doi.org/10.1007/s00417-019-04373-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-019-04373-4

Keywords

Navigation