Advertisement

In vivo analysis and comparison of anterior segment structures of both eyes in unilateral Fuchs’ uveitis syndrome

  • Muhammet Derda OzerEmail author
  • Fatih Kebapci
  • Muhammed Batur
  • Erbil Seven
  • Serek Tekin
Inflammatory Disorders
  • 32 Downloads

Abstract

Purpose

To compare corneal endothelial cell density (ECD), iris stromal thickness (IST), iris pigment epithelium optical density (IPE OD), and Schlemm’s canal (SC) measurements in patients having unilateral Fuchs’ uveitis syndrome (FUS).

Methods

This is a randomized, prospective study. Currently, diagnosed unilateral FUS and phakic cases were defined to be the inclusion criteria to the study. The specular microscope was used to measure ECD. Anterior segment images were acquired by using SD-OCT. The images were extracted and uploaded to the ImageJ program for further analysis. Two blinded investigators analyzed the IST, IPE OD, and SC area in both healthy (N) and affected eyes (FUS) and the comparative analysis was made by using SPSS program.

Results

Of twenty-one participants, 13 were female (62%). The mean age of the participants was 30 ± 9 (18–47) years. ECD was 2228 ± 365 and 2513 ± 209 cells/mm2 in the FUS and N, respectively (p < 0,001). In FUS, the mean nasal and temporal (n-t) IST was measured as 380 ± 44 and 347 ± 41 μm, compared to 393 ± 61 and 355 ± 62 μm in N, respectively (p = 0.3 and p = 0.4 respectively). The mean n-t IPE OD was measured as 1110 ± 499 and 937 ± 370 in FUS, compared to 1147 ± 528 and 1267 ± 428 in N, respectively (p = 0.008 temporal). The mean n-t SC area was measured as 5479 ± 1951 and 5624 ± 2722 μm2 in FUS, compared to 5736 ± 2574 and 5633 ± 1835 μm2 in N, respectively (p = 0.9 and p = 0.7 respectively).

Conclusion

Decreased ECD in FUS may lead to serious complications after cataract surgery. Temporal IPE depigmentation occurs prior to the nasal side in FUS.

Keywords

Fuchs’ uveitis syndrome Iris pigment epithelium Schlemms’ canal Iris stromal thickness Corneal endothelium cell density Anterior segment spectral domain optical coherence tomography 

Notes

Acknowledgments

Special thanks are given to Tuba, my beloved friend, for editing our manuscript.

Availability of data and materials

The data supporting our findings can be found at the Van Yuzuncu Yil University, Dursun Odabas Faculty of Medicine, Ophthalmology Department, Uveitis section secretary.

Authors’ contributions

M.D.O and F.K performed the data collection; M.D.O and M.B were involved in planning and supervised the work; M.D.O, F.K, M.B, E.S, and S.T processed the experimental data, performed the analysis, drafted the manuscript, and designed the figures. All authors discussed the results and commented on the manuscript.

Compliance with ethical standards

Ethics approval and consent to participate

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by the Van Yuzuncu Yil University, Dursun Odabas Faculty of Medicine, and Surgical and Pharmaceutical Research Ethics Board.

Consent to publish

Written informed consent for publication was obtained from all of the participants.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Kazokoglu H, Onal S, Tugal-Tutkun I et al (2008) Demographic and clinical features of uveitis in tertiary centers in Turkey. Ophthalmic Epidemiol 15:285–293CrossRefGoogle Scholar
  2. 2.
    Rathinam SR, Namperumalsamy P (2007) Global variation and pattern changes in epidemiology of uveitis. Indian J Ophthalmol 55:173–183CrossRefGoogle Scholar
  3. 3.
    Basarir B, Altan C, Pinarci EY, Celik U, Satana B, Demirok A (2013) Analysis of iris structure and iridocorneal angle parameters with anterior segment optical coherence tomography in Fuchs’ uveitis syndrome. Int Ophthalmol 33:245–250CrossRefGoogle Scholar
  4. 4.
    Kimura SJ, Hogan MJ, Thygeson P (1955) Fuchs’ syndrome of heterochromic cyclitis. Arch Ophthalmol 54(2):179–186CrossRefGoogle Scholar
  5. 5.
    Bonfioli AA, Curi AL, Orefice F (2005) Fuchs’ heterochromic cyclitis. Semin Ophthalmol 20(3):143–146CrossRefGoogle Scholar
  6. 6.
    Mohamed Q, Zamir E (2005) Update on Fuchs’ uveitis syndrome. Curr Opin Ophthalmol 16:356–363CrossRefGoogle Scholar
  7. 7.
    Kardes E, Akcay BIS, Unlu C, Ergin A (2017) Choroidal thickness in eyes with Fuchs uveitis syndrome. Ocul Immunol Inflamm 25(2):259–266CrossRefGoogle Scholar
  8. 8.
    Toledo de Abreu M, Belfort R, Hirata P (1982) Fuchs’ heterochromic cyclitis and ocular toxoplasmosis. Am J Ophthalmol 93:739–744CrossRefGoogle Scholar
  9. 9.
    Schwab IR (1991) The epidemiologic association of Fuchs’ heterochromic iridocyclitis and ocular toxoplasmosis. Am J Ophthalmol 111:356–362CrossRefGoogle Scholar
  10. 10.
    Birnbaum AD, Tessler HH, Schultz KL et al (2007) Epidemiologic relationship between Fuchs heterochromic iridocyclitis and the United States rubella vaccination program. Am J Ophthalmol 144:424–428CrossRefGoogle Scholar
  11. 11.
    Quentin CD, Reiber H (2004) Fuchs heterochromic cyclitis: rubella virus antibodies and genome in aqueous humor. Am J Ophthalmol 138:46–54CrossRefGoogle Scholar
  12. 12.
    Chee SP, Jap A (2008) Presumed Fuchs heterochromic iridocyclitis and Posner-Schlossman syndrome: comparison of cytomegalovirus-positive and negative eyes. Am J Ophthalmol 146:883–889CrossRefGoogle Scholar
  13. 13.
    Liesegang TJ (1982) Clinical features and prognosis in Fuchs’ uveitis syndrome. Arch Ophthalmol 100(10):1622–1626CrossRefGoogle Scholar
  14. 14.
    Fearnley IR, Rosenthal AR (1995) Fuchs’ heterochromic iridocyclitis revisited. Acta Ophthalmol Scand 73(2):166–170CrossRefGoogle Scholar
  15. 15.
    Jones NP (1991) Fuchs’ heterochromic uveitis: a reappraisal of the clinical spectrum. Eye (Lond) 5:649–661CrossRefGoogle Scholar
  16. 16.
    Ivernizzi A, Cigada M, Savoldi L, Cavuto S, Fontana L, Cimino K (2014) In vivo analysis of the iris thickness by spectral domain optical coherence tomography. Br J Ophthalmol 98(9):1245–1249CrossRefGoogle Scholar
  17. 17.
    Fischer CA (1973) Affinity for retinal pigment epithelium by certain viruses. Am J Ophthalmol 75(1):164–166CrossRefGoogle Scholar
  18. 18.
    Wang X, Xiong K, Lu L, Gu D, Wang S, Chen J, Xiao H, Zhou G (2015) Developmental origin of the posterior pigmented epithelium of iris. Cell Biochem Biophys 71(2):1067–1076CrossRefGoogle Scholar
  19. 19.
    Imamoglu S, Sevim MS, Alpogan O, Ercalik NY, Kumral ET, Pekel G, Bardak H (2016) In vivo biometric evaluation of Schlemm’s canal with spectral-domain optical coherence tomography in pseudoexfoliation glaucoma. Acta Ophthalmol 94(8):688–692CrossRefGoogle Scholar
  20. 20.
    Benedikt O, Roll P, Zirm M (1978) The glaucoma in heterochromic cyclitis Fuchs. Gonioscopic studies and electron microscopic investigations of the trabecular meshwork. Klin Monatsbl Augenheilkd 173(4):523–533Google Scholar
  21. 21.
    Kagemann L, Nevins JE, Jan NJ, Wollstein G, Ishikawa H, Kagemann J, Sigal IA, Nadler Z, Ling Y, Schuman JS (2014) Characterisation of Schlemm’s canal cross-sectional area. Br J Ophthalmol 98(Suppl 2):ii10–ii14CrossRefGoogle Scholar
  22. 22.
    Szepessy Z, Toth G, Barsi A, Kranitz K, Nagy ZZ (2016) Anterior segment characteristics of Fuchs uveitis syndrome. Ocul Immunol Inflamm 24(5):594–598CrossRefGoogle Scholar
  23. 23.
    Huang Z, Wang XY, Liu L, Han W (2014) Corneal decompensation in bilateral Fuchs heterochromic uveitis. Can J Ophthalmol 49(1):e11–e14CrossRefGoogle Scholar
  24. 24.
    Alfawaz AM, Holland GN, Yu F et al (2016) Corneal endothelium in patients with anterior uveitis. Ophthalmology. 123(8):1637–1645CrossRefGoogle Scholar
  25. 25.
    Dastiridou A, Marion K, Niemeyer M et al (2018) Pilot study of the effects of ambient light level variation on spectral domain anterior segment OCT-derived angle metrics in Caucasians versus Asians. Curr Eye Res 43(7):955–959CrossRefGoogle Scholar
  26. 26.
    Tugal-Tutkun I, Guney-Tefekli E, Kamaci-Duman F, Corum I (2009) A cross-sectional and longitudinal study of Fuchs uveitis syndrome in Turkish patients. Am J Ophthalmol 148(4):510–515CrossRefGoogle Scholar
  27. 27.
    Goldberg N, Chou J, Moore A, Tsang S (2009) Autofluorescence imaging in rubella retinopathy. Ocul Immunol Inflamm 17(6):400–402CrossRefGoogle Scholar
  28. 28.
    Mehta N, Lavinsky F, Gattoussi S et al (2018) Increased inner retinal layer reflectivity in eyes with acute CRVO correlates with worse visual outcomes. Invest Ophthalmol Vis Sci 59(8):3503–3510CrossRefGoogle Scholar
  29. 29.
    Berger BB, Tessler HH, Kottow MH (1980) Anterior segment ischemia in Fuchs’ heterochromic cyclitis. Arch Ophthalmol 98(3):499–501CrossRefGoogle Scholar
  30. 30.
    Usui T, Tomidokoro A, Mishima K, Mataki N, Mayama C, Honda N, Amano S, Araie M (2011) Identification of Schlemm’s canal and its surrounding tissues by anterior segment fourier domain optical coherence tomography. Invest Ophthalmol Vis Sci 52:6934–6939CrossRefGoogle Scholar
  31. 31.
    Kagemann L, Wang B, Wollstein G et al (2014) IOP elevation reduces Schlemm’s canal cross-sectional area. Invest Ophthalmol Vis Sci 55:1805–1809CrossRefGoogle Scholar
  32. 32.
    Hong J, Xu J, Wei A, Wen W, Chen J, Yu X, Sun X (2013) Spectral-domain optical coherence tomographic assessment of Schlemm’s canal in Chinese subjects with primary open-angle glaucoma. Ophthalmology 120:709–715CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Medicine, Ophthalmology DepartmentVan Yuzuncu Yil UniversityTusba, VANTurkey

Personalised recommendations