Skip to main content

Advertisement

Log in

Retinal sensitivity in angioid streaks

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate retinal sensitivity in eyes with angioid streaks (AS).

Methods

This study was a retrospective observational case series. A total of 13 eyes from 9 patients with AS underwent ophthalmologic examination, including fundus autofluorescence (FAF), spectral domain optical tomography (SD-OCT), and microperimetry. Retinal pigment epithelium (RPE) atrophy was assessed using FAF. Outer retinal atrophy, more specifically, disruption of the ellipsoid zone, was evaluated using SD-OCT images. The association between retinal sensitivity, RPE atrophy or outer retinal atrophy, and patient demographic characteristics or ophthalmologic findings were investigated.

Results

The mean area of outer retinal atrophy was 14.5 ± 12.9 mm2, significantly larger than the mean area of RPE atrophy (9.0 ± 9.0 mm2; P = 0.0028). The average retinal sensitivity in the area of RPE atrophy was 2.4 ± 5.6 dB, that in the area of outer retinal atrophy outside RPE atrophy was 14.6 ± 7.5 dB, and that in the area without any atrophy was 25.6 ± 5.1 dB. Reticular pseudodrusen (RPD) was observed in 5 eyes. Eyes with RPD showed a greater extent of both outer retinal atrophy and RPE atrophy than those without RPD and a greater decrease in mean retinal sensitivity.

Conclusions

In eyes with AS, especially in those with RPD, large areas of outer retinal atrophy and RPE atrophy were observed, and the retinal sensitivity in the areas was correspondingly decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chatziralli I, Saitakis G, Dimitriou E, Chatzirallis A, Stoungioti S, Theodossiadis G, Theodossiadis P (2018) Angioid streaks: a comprehensive review from pathophysiology to treatment. Retina. https://doi.org/10.1097/IAE.0000000000002327

  2. Martinez-Serrano MG, Rodriguez-Reyes A, Guerrero-Naranjo JL, Salcedo-Villanueva G, Fromow-Guerra J, Garcia-Aguirre G, Morales-Canton V, Velez-Montoya R (2017) Long-term follow-up of patients with choroidal neovascularization due to angioid streaks. Clin Ophthalmol 11:23–30. https://doi.org/10.2147/OPTH.S118016

    Article  PubMed  Google Scholar 

  3. Georgalas I, Papaconstantinou D, Koutsandrea C, Kalantzis G, Karagiannis D, Georgopoulos G, Ladas I (2009) Angioid streaks, clinical course, complications, and current therapeutic management. Ther Clin Risk Manag 5:81–89

    PubMed  PubMed Central  Google Scholar 

  4. Chassaing N, Martin L, Calvas P, Le Bert M, Hovnanian A (2005) Pseudoxanthoma elasticum: a clinical, pathophysiological and genetic update including 11 novel ABCC6 mutations. J Med Genet 42:881–892. https://doi.org/10.1136/jmg.2004.030171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Le Saux O, Martin L, Aherrahrou Z, Leftheriotis G, Varadi A, Brampton CN (2012) The molecular and physiological roles of ABCC6: more than meets the eye. Front Genet 3:289. https://doi.org/10.3389/fgene.2012.00289

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sawa M, Ober MD, Freund KB, Spaide RF (2006) Fundus autofluorescence in patients with pseudoxanthoma elasticum. Ophthalmology 113:814–820 e812. https://doi.org/10.1016/j.ophtha.2006.01.037

    Article  PubMed  Google Scholar 

  7. Schoenberger SD, Agarwal A (2013) Geographic chorioretinal atrophy in pseudoxanthoma elasticum. Am J Ophthalmol 156:715–723. https://doi.org/10.1016/j.ajo.2013.05.034

    Article  PubMed  Google Scholar 

  8. Finger RP, Charbel Issa P, Ladewig M, Gotting C, Holz FG, Scholl HP (2009) Fundus autofluorescence in pseudoxanthoma elasticum. Retina 29:1496–1505. https://doi.org/10.1097/IAE.0b013e3181aade47

    Article  PubMed  Google Scholar 

  9. Ueda-Arakawa N, Ooto S, Tsujikawa A, Yamashiro K, Oishi A, Yoshimura N (2013) Sensitivity and specificity of detecting reticular pseudodrusen in multimodal imaging in Japanese patients. Retina 33:490–497. https://doi.org/10.1097/IAE.0b013e318276e0ae

    Article  PubMed  Google Scholar 

  10. Pumariega NM, Smith RT, Sohrab MA, Letien V, Souied EH (2011) A prospective study of reticular macular disease. Ophthalmology 118:1619–1625. https://doi.org/10.1016/j.ophtha.2011.01.029

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schmitz-Valckenberg S, Alten F, Steinberg JS, Jaffe GJ, Fleckenstein M, Mukesh BN, Hohman TC, Holz FG Geographic Atrophy Progression Study G(2011) Reticular drusen associated with geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci 52:5009–5015. https://doi.org/10.1167/iovs.11-7235

    Article  PubMed  Google Scholar 

  12. Spaide RF (2018) Improving the age-related macular degeneration construct: a new classification system. Retina 38:891–899. https://doi.org/10.1097/IAE.0000000000001732

    Article  PubMed  Google Scholar 

  13. Spaide RF (2013) Outer retinal atrophy after regression of subretinal drusenoid deposits as a newly recognized form of late age-related macular degeneration. Retina 33:1800–1808. https://doi.org/10.1097/IAE.0b013e31829c3765

    Article  PubMed  Google Scholar 

  14. Gliem M, Hendig D, Finger RP, Holz FG, Charbel Issa P (2015) Reticular pseudodrusen associated with a diseased Bruch membrane in pseudoxanthoma elasticum. JAMA Ophthalmol 133:581–588. https://doi.org/10.1001/jamaophthalmol.2015.117

    Article  Google Scholar 

  15. Zweifel SA, Imamura Y, Spaide TC, Fujiwara T, Spaide RF (2010) Prevalence and significance of subretinal drusenoid deposits (reticular pseudodrusen) in age-related macular degeneration. Ophthalmology 117:1775–1781. https://doi.org/10.1016/j.ophtha.2010.01.027

    Article  PubMed  Google Scholar 

  16. Kumar V (2018) Reticular pseudodrusen and thin choroid are associated with angioid streaks. Ophthalmic Surg Lasers Imaging Retina 49:402–408. https://doi.org/10.3928/23258160-20180601-04

    Article  PubMed  Google Scholar 

  17. Smith RT, Sohrab MA, Busuioc M, Barile G (2009) Reticular macular disease. Am J Ophthalmol 148:733–743 e732. https://doi.org/10.1016/j.ajo.2009.06.028

    Article  PubMed  PubMed Central  Google Scholar 

  18. Smith RT, Chan JK, Busuoic M, Sivagnanavel V, Bird AC, Chong NV (2006) Autofluorescence characteristics of early, atrophic, and high-risk fellow eyes in age-related macular degeneration. Invest Ophthalmol Vis Sci 47:5495–5504. https://doi.org/10.1167/iovs.05-1318

    Article  PubMed  PubMed Central  Google Scholar 

  19. Igarashi N, Matsuura M, Hashimoto Y, Hirasawa K, Murata H, Inoue T, Ryo O, Aihara M, Asaoka R (2016) Assessing visual fields in patients with retinitis pigmentosa using a novel microperimeter with eye tracking: the MP-3. PLoS One 11:e0166666. https://doi.org/10.1371/journal.pone.0166666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Asahina Y, Kitano M, Hashimoto Y, Yanagisawa M, Murata H, Inoue T, Obata R, Asaoka R (2017) The structure-function relationship measured with optical coherence tomography and a microperimeter with auto-tracking: the MP-3, in patients with retinitis pigmentosa. Sci Rep 7:15766. https://doi.org/10.1038/s41598-017-16143-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Takahashi A, Ooto S, Yamashiro K, Oishi A, Tamura H, Nakanishi H, Ueda-Arakawa N, Tsujikawa A, Yoshimura N (2016) Photoreceptor damage and reduction of retinal sensitivity surrounding geographic atrophy in age-related macular degeneration. Am J Ophthalmol 168:260–268. https://doi.org/10.1016/j.ajo.2016.06.006

    Article  PubMed  Google Scholar 

  22. Burnham KP, Anderson DR (2014) P values are only an index to evidence: 20th- vs. 21st-century statistical science. Ecology 95:627–630

    Article  CAS  PubMed  Google Scholar 

  23. Gliem M, Muller PL, Birtel J, Hendig D, Holz FG, Charbel Issa P (2016) Frequency, phenotypic characteristics and progression of atrophy associated with a diseased Bruch’s membrane in pseudoxanthoma elasticum. Invest Ophthalmol Vis Sci 57:3323–3330. https://doi.org/10.1167/iovs.16-19388

    Article  CAS  PubMed  Google Scholar 

  24. Molina-Martin A, Perez-Cambrodi RJ, Pinero DP (2018) Current clinical application of microperimetry: a review. Semin Ophthalmol 33:620–628. https://doi.org/10.1080/08820538.2017.1375125

    Article  PubMed  Google Scholar 

  25. Sugiura A, Fujino R, Takemiya N, Shimizu K, Matsuura M, Murata H, Inoue T, Obata R, Asaoka R (2017) The association between visual function and retinal structure in chronic central serous chorioretinopathy. Sci Rep 7:16288. https://doi.org/10.1038/s41598-017-16339-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ueda-Arakawa N, Ooto S, Nakata I, Yamashiro K, Tsujikawa A, Oishi A, Yoshimura N (2013) Prevalence and genomic association of reticular pseudodrusen in age-related macular degeneration. Am J Ophthalmol 155:260–269 e262. https://doi.org/10.1016/j.ajo.2012.08.011

    Article  PubMed  Google Scholar 

  27. Klein R, Meuer SM, Knudtson MD, Iyengar SK, Klein BE (2008) The epidemiology of retinal reticular drusen. Am J Ophthalmol 145:317–326. https://doi.org/10.1016/j.ajo.2007.09.008

    Article  PubMed  Google Scholar 

  28. Greferath U, Guymer RH, Vessey KA, Brassington K, Fletcher EL (2016) Correlation of histologic features with in vivo imaging of reticular pseudodrusen. Ophthalmology 123:1320–1331. https://doi.org/10.1016/j.ophtha.2016.02.009

    Article  Google Scholar 

  29. Curcio CA, Presley JB, Millican CL, Medeiros NE (2005) Basal deposits and drusen in eyes with age-related maculopathy: evidence for solid lipid particles. Exp Eye Res 80:761–775. https://doi.org/10.1016/j.exer.2004.09.017

    Article  CAS  PubMed  Google Scholar 

  30. Sivaprasad S, Bird A, Nitiahpapand R, Nicholson L, Hykin P, Chatziralli I, Moorfields UCLAMDC (2016) Perspectives on reticular pseudodrusen in age-related macular degeneration. Surv Ophthalmol 61:521–537. https://doi.org/10.1016/j.survophthal.2016.02.005

    Article  PubMed  Google Scholar 

  31. Querques G, Massamba N, Srour M, Boulanger E, Georges A, Souied EH (2014) Impact of reticular pseudodrusen on macular function. Retina 34:321–329. https://doi.org/10.1097/IAE.0b013e3182993df1

    Article  PubMed  Google Scholar 

  32. Wu Z, Ayton LN, Makeyeva G, Guymer RH, Luu CD (2015) Impact of reticular pseudodrusen on microperimetry and multifocal electroretinography in intermediate age-related macular degeneration. Invest Ophthalmol Vis Sci 56:2100–2106. https://doi.org/10.1167/iovs.14-16210

    Article  PubMed  Google Scholar 

  33. Ooto S, Ellabban AA, Ueda-Arakawa N, Oishi A, Tamura H, Yamashiro K, Tsujikawa A, Yoshimura N (2013) Reduction of retinal sensitivity in eyes with reticular pseudodrusen. Am J Ophthalmol 156:1184–1191 e1182. https://doi.org/10.1016/j.ajo.2013.06.036

    Article  PubMed  Google Scholar 

  34. Sulzbacher F, Kiss C, Kaider A, Eisenkoelbl S, Munk M, Roberts P, Sacu S, Schmidt-Erfuth U (2012) Correlation of SD-OCT features and retinal sensitivity in neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 53:6448–6455. https://doi.org/10.1167/iovs.11-9162

    Article  PubMed  Google Scholar 

  35. Hautamäki A, Oikkonen J, Onkamo P, Immonen I (2014) Correlation between components of newly diagnosed exudative age-related macular degeneration lesion and focal retinal sensitivity. Acta Ophthalmol 92:51–58. https://doi.org/10.1111/j.1755-3768.2012.02556.x

    Article  PubMed  Google Scholar 

  36. Ogino K, Tsujikawa A, Yamashiro K, Ooto S, Oishi A, Nalata I, Miyake M, Takahashi A, Ellabban AA, Yoshimura N (2014) Multimodal evaluation of macular function in age-related macular degeneration. Jpn J Ophthalmol 58:155–165. https://doi.org/10.1007/s10384-013-0295-z

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was done under JSPS KAKENHI Grant Number JP16K11260. The organization had no role in study design, in the collection, analysis, and interpretation of data, in the writing of the report, or in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Obata.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Written informed consent was not required by the IRB, but participants who did not grant authorization to use their medical records for the research were excluded from analyses.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nomura, Y., Inoue, T., Asano, S. et al. Retinal sensitivity in angioid streaks. Graefes Arch Clin Exp Ophthalmol 257, 1591–1599 (2019). https://doi.org/10.1007/s00417-019-04332-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-019-04332-z

Keywords

Navigation