Skip to main content

Advertisement

Log in

Relationship between choroidal structure and duration of diabetes

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

The aim of this study was to evaluate the relationship between the choroidal structure of diabetic patients without diabetic retinopathy (DR) and duration of diabetes.

Methods

This study is a retrospective observational study in diabetic patients without DR. Eyes with diabetes mellitus (DM) (n = 105) were divided into two groups based on the duration: long duration group (over 10 years, n = 31) and short duration group (less than 10 years, n = 74). One hundred seventeen eyes of non-diabetic patients were used as control group. All patients underwent enhanced depth imaging optical coherence tomography, and the choroidal structure was analyzed using a binarization method.

Results

There was no significant difference in areas of total choroid and lumina/stroma or central choroidal thickness (CCT) between control and DM groups. In contrast, lumina/total choroidal (L/C) ratio was significantly lower in diabetic eyes than in control eyes (P = 0.02). Although there was no significant difference in the areas or CCT between short and long duration groups, L/C ratio was significantly lower in the long duration group than in the short duration group (P = 0.03).

Conclusions

The current study suggests that choroidal vasculature is involved in the diabetic eyes and that the choroidal structure has changed with duration of diabetes. Our study points out that L/C ratio is a new potential biomarker in monitoring choroidal vascular disorders in diabetic eyes without DR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rathmann W, Giani G (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:2568–2569 author reply 2569

    Article  PubMed  Google Scholar 

  2. Yau JWY, Rogers SL, Kawasaki R et al (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35:556–564. https://doi.org/10.2337/dc11-1909

    Article  PubMed  PubMed Central  Google Scholar 

  3. Antonetti DA, Klein R, Gardner TW (2012) Diabetic retinopathy. N Engl J Med 366:1227–1239. https://doi.org/10.1056/NEJMra1005073

    Article  CAS  PubMed  Google Scholar 

  4. Durham JT, Herman IM (2011) Microvascular modifications in diabetic retinopathy. Curr Diab Rep 11:253–264. https://doi.org/10.1007/s11892-011-0204-0

    Article  PubMed  Google Scholar 

  5. Barot M, Gokulgandhi MR, Patel S, Mitra AK (2013) Microvascular complications and diabetic retinopathy: recent advances and future implications. Future Med Chem 5:301–314. https://doi.org/10.4155/fmc.12.206

    Article  CAS  PubMed  Google Scholar 

  6. Hidayat AA, Fine BS (1985) Diabetic choroidopathy. Light and electron microscopic observations of seven cases. Ophthalmology 92:512–522

    Article  CAS  PubMed  Google Scholar 

  7. Lutty GA (2017) Diabetic choroidopathy. Vis Res 139:161–167. https://doi.org/10.1016/j.visres.2017.04.011

    Article  PubMed  Google Scholar 

  8. Laviers H, Zambarakji H (2014) Enhanced depth imaging-OCT of the choroid: a review of the current literature. Graefes Arch Clin Exp Ophthalmol 252:1871–1883. https://doi.org/10.1007/s00417-014-2840-y

    Article  CAS  PubMed  Google Scholar 

  9. Kase S, Endo H, Yokoi M et al (2016) Choroidal thickness in diabetic retinopathy in relation to long-term systemic treatments for diabetes mellitus. Eur J Ophthalmol 26:158–162. https://doi.org/10.5301/ejo.5000676

    Article  PubMed  Google Scholar 

  10. Endo H, Kase S, Takahashi M et al (2018) Alteration of layer thickness in the choroid of diabetic patients. Clin Exp Ophthalmol 46:926–933. https://doi.org/10.1111/ceo.13299

    Article  PubMed  Google Scholar 

  11. Sonoda S, Sakamoto T, Yamashita T et al (2014) Effect of intravitreal triamcinolone acetonide or bevacizumab on choroidal thickness in eyes with diabetic macular edema. Invest Ophthalmol Vis Sci 55:3979. https://doi.org/10.1167/iovs.14-14188

  12. Okamoto M, Yamashita M, Ogata N (2018) Effects of intravitreal injection of ranibizumab on choroidal structure and blood flow in eyes with diabetic macular edema. Graefes Arch Clin Exp Ophthalmol 256:885–892. https://doi.org/10.1007/s00417-018-3939-3

    Article  CAS  PubMed  Google Scholar 

  13. Tan K-A, Laude A, Yip V et al (2016) Choroidal vascularity index—a novel optical coherence tomography parameter for disease monitoring in diabetes mellitus? Acta Ophthalmol 94:e612–e616. https://doi.org/10.1111/aos.13044

    Article  PubMed  Google Scholar 

  14. Gupta P, Thakku SG, Sabanayagam C et al (2017) Characterisation of choroidal morphological and vascular features in diabetes and diabetic retinopathy. Br J Ophthalmol 101:1038–1044. https://doi.org/10.1136/bjophthalmol-2016-309366

    Article  PubMed  Google Scholar 

  15. Kim M, Ha MJ, Choi SY, Park Y-H (2018) Choroidal vascularity index in type-2 diabetes analyzed by swept-source optical coherence tomography. Sci Rep 8:70. https://doi.org/10.1038/s41598-017-18511-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Klein R, Klein BE, Moss SE et al (1984) The Wisconsin epidemiologic study of diabetic retinopathy. II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Arch Ophthalmol 102:520–526

    Article  CAS  PubMed  Google Scholar 

  17. Horváth H, Kovács I, Sándor GL et al (2018) Choroidal thickness changes in non-treated eyes of patients with diabetes: swept-source optical coherence tomography study. Acta Diabetol 55:927–934. https://doi.org/10.1007/s00592-018-1169-0

    Article  PubMed  Google Scholar 

  18. Yülek F, Uğurlu N, Önal ED et al (2014) Choroidal changes and duration of diabetes. Semin Ophthalmol 29:80–84. https://doi.org/10.3109/08820538.2013.821504

    Article  PubMed  Google Scholar 

  19. Sudhalkar A, Chhablani JK, Venkata A et al (2015) Choroidal thickness in diabetic patients of Indian ethnicity. Indian J Ophthalmol 63:912–916. https://doi.org/10.4103/0301-4738.176024

    Article  PubMed  PubMed Central  Google Scholar 

  20. Abadia B, Suñen I, Calvo P et al (2018) Choroidal thickness measured using swept-source optical coherence tomography is reduced in patients with type 2 diabetes. PLoS One 13:e0191977. https://doi.org/10.1371/journal.pone.0191977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tavares Ferreira J, Vicente A, Proença R et al (2018) Choroidal thickness in diabetic patients without diabetic retinopathy. Retina 38:795–804. https://doi.org/10.1097/IAE.0000000000001582

    Article  PubMed  Google Scholar 

  22. Kawasaki R, Tanaka S, Tanaka S et al (2011) Incidence and progression of diabetic retinopathy in Japanese adults with type 2 diabetes: 8 year follow-up study of the Japan Diabetes Complications Study (JDCS). Diabetologia 54:2288–2294. https://doi.org/10.1007/s00125-011-2199-0

    Article  CAS  PubMed  Google Scholar 

  23. Sonoda S, Sakamoto T, Kakiuchi N et al (2018) Semi-automated software to measure luminal and stromal areas of choroid in optical coherence tomographic images. Jpn J Ophthalmol 62:179–185. https://doi.org/10.1007/s10384-017-0558-1

    Article  PubMed  Google Scholar 

  24. Sonoda S, Sakamoto T, Yamashita T et al (2015) Luminal and stromal areas of choroid determined by binarization method of optical coherence tomographic images. Am J Ophthalmol 159:1123–1131.e1. https://doi.org/10.1016/j.ajo.2015.03.005

    Article  PubMed  Google Scholar 

  25. Nagaoka T, Kitaya N, Sugawara R et al (2004) Alteration of choroidal circulation in the foveal region in patients with type 2 diabetes. Br J Ophthalmol 88:1060–1063. https://doi.org/10.1136/bjo.2003.035345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bursell SE, Clermont AC, Kinsley BT et al (1996) Retinal blood flow changes in patients with insulin-dependent diabetes mellitus and no diabetic retinopathy. Invest Ophthalmol Vis Sci 37:886–897

    CAS  PubMed  Google Scholar 

  27. McLeod DS, Lefer DJ, Merges C, Lutty GA (1995) Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroid. Am J Pathol 147:642–653

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Esmaeelpour M, Považay B, Hermann B et al (2011) Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography. Invest Ophthalmol Vis Sci 52:5311–5316. https://doi.org/10.1167/iovs.10-6875

    Article  PubMed  Google Scholar 

  29. Querques G, Lattanzio R, Querques L et al (2012) Enhanced depth imaging optical coherence tomography in type 2 diabetes. Invest Opthalmol Vis Sci 53:6017. https://doi.org/10.1167/iovs.12-9692

    Article  Google Scholar 

  30. Dimitrova G, Chihara E, Takahashi H et al (2017) Quantitative retinal optical coherence tomography angiography in patients with diabetes without diabetic retinopathy. Invest Ophthalmol Vis Sci 58:190–196. https://doi.org/10.1167/iovs.16-20531

    Article  PubMed  Google Scholar 

  31. Scarinci F, Picconi F, Giorno P et al (2018) Deep capillary plexus impairment in patients with type 1 diabetes mellitus with no signs of diabetic retinopathy revealed using optical coherence tomography angiography. Acta Ophthalmol 96:e264–e265. https://doi.org/10.1111/aos.13510

    Article  PubMed  Google Scholar 

  32. Simonett JM, Scarinci F, Picconi F et al (2017) Early microvascular retinal changes in optical coherence tomography angiography in patients with type 1 diabetes mellitus. Acta Ophthalmol 95:e751–e755. https://doi.org/10.1111/aos.13404

    Article  PubMed  Google Scholar 

  33. Carnevali A, Sacconi R, Corbelli E et al (2017) Optical coherence tomography angiography analysis of retinal vascular plexuses and choriocapillaris in patients with type 1 diabetes without diabetic retinopathy. Acta Diabetol 54:695–702. https://doi.org/10.1007/s00592-017-0996-8

    Article  CAS  PubMed  Google Scholar 

  34. Cao D, Yang D, Huang Z et al (2018) Optical coherence tomography angiography discerns preclinical diabetic retinopathy in eyes of patients with type 2 diabetes without clinical diabetic retinopathy. Acta Diabetol 55:469–477. https://doi.org/10.1007/s00592-018-1115-1

    Article  PubMed  Google Scholar 

  35. Sogawa K, Nagaoka T, Tanano I et al (2012) Association between diabetic retinopathy and flow-mediated vasodilation in type 2 DM. Curr Eye Res 37:446–451. https://doi.org/10.3109/02713683.2012.654883

    Article  CAS  PubMed  Google Scholar 

  36. Huang ES, Laiteerapong N, Liu JY et al (2014) Rates of complications and mortality in older patients with diabetes mellitus: the diabetes and aging study. JAMA Intern Med 174:251–258. https://doi.org/10.1001/jamainternmed.2013.12956

    Article  PubMed  PubMed Central  Google Scholar 

  37. Goldin A, Beckman JA, Schmidt AM, Creager MA (2006) Advanced glycation end products. Circulation 114:597–605. https://doi.org/10.1161/CIRCULATIONAHA.106.621854

    Article  CAS  PubMed  Google Scholar 

  38. Boehm BO, Schilling S, Rosinger S et al (2004) Elevated serum levels of N(epsilon)-carboxymethyl-lysine, an advanced glycation end product, are associated with proliferative diabetic retinopathy and macular oedema. Diabetologia 47:1376–1379. https://doi.org/10.1007/s00125-004-1455-y

    Article  CAS  PubMed  Google Scholar 

  39. Monnier VM, Bautista O, Kenny D et al (1999) Skin collagen glycation, glycoxidation, and crosslinking are lower in subjects with long-term intensive versus conventional therapy of type 1 diabetes: relevance of glycated collagen products versus HbA1c as markers of diabetic complications. DCCT Skin Collagen Ancillary Study Group. Diabetes Control and Complications Trial. Diabetes 48:870–880

    Article  CAS  PubMed  Google Scholar 

  40. Hirano T, Iesato Y, Toriyama Y et al (2014) Correlation between diabetic retinopathy severity and elevated skin autofluorescence as a marker of advanced glycation end-product accumulation in type 2 diabetic patients. J Diabetes Complicat 28:729–734. https://doi.org/10.1016/j.jdiacomp.2014.03.003

    Article  Google Scholar 

  41. Kase S, Ishida S, Rao NA (2011) Immunolocalization of advanced glycation end products in human diabetic eyes : an immunohistochemical study. JDM vol 1, pp 57–62. https://doi.org/10.4236/jdm.2011.13009

  42. Milne R, Brownstein S (2013) Advanced glycation end products and diabetic retinopathy. Amino Acids 44:1397–1407. https://doi.org/10.1007/s00726-011-1071-3

    Article  CAS  PubMed  Google Scholar 

  43. Lopes-Virella MF, Hunt KJ, Baker NL et al (2011) Levels of oxidized LDL and advanced glycation end products-modified LDL in circulating immune complexes are strongly associated with increased levels of carotid intima-media thickness and its progression in type 1 diabetes. Diabetes 60:582–589. https://doi.org/10.2337/db10-0915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jo Y, Ikuno Y, Iwamoto R et al (2014) Choroidal thickness changes after diabetes type 2 and blood pressure control in a hospitalized situation. Retina 34:1190–1198. https://doi.org/10.1097/IAE.0000000000000051

    Article  PubMed  Google Scholar 

  45. Akay F, Gundogan FC, Yolcu U et al (2016) Choroidal thickness in systemic arterial hypertension. Eur J Ophthalmol 26:152–157. https://doi.org/10.5301/ejo.5000675

    Article  PubMed  Google Scholar 

  46. Martin LM, Leff M, Calonge N et al (2000) Validation of self-reported chronic conditions and health services in a managed care population. Am J Prev Med 18:215–218

    Article  CAS  PubMed  Google Scholar 

  47. Shah BR, Manuel DG (2008) Self-reported diabetes is associated with self-management behaviour: a cohort study. BMC Health Serv Res 8:142. https://doi.org/10.1186/1472-6963-8-142

    Article  PubMed  PubMed Central  Google Scholar 

  48. Liu G, Xu D, Wang F (2018) New insights into diabetic retinopathy by OCT angiography. Diabetes Res Clin Pract 142:243–253. https://doi.org/10.1016/j.diabres.2018.05.043

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Michiyuki Saito for his technical assistance in evaluation of the manuscript.

Funding

No funding was received for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Kase.

Ethics declarations

For this type of study, formal consent is not required.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endo, H., Kase, S., Ito, Y. et al. Relationship between choroidal structure and duration of diabetes. Graefes Arch Clin Exp Ophthalmol 257, 1133–1140 (2019). https://doi.org/10.1007/s00417-019-04295-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-019-04295-1

Keywords

Navigation