Skip to main content

Advertisement

Log in

A new immunodeficient retinal dystrophic rat model for transplantation studies using human-derived cells

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To create new immunodeficient Royal College of Surgeons (RCS) rats by introducing the defective MerTK gene into athymic nude rats.

Methods

Female homozygous RCS (RCS-p+/RCS-p+) and male nude rats (Hsd:RH-Foxn1mu, mutation in the foxn1 gene; no T cells) were crossed to produce heterozygous F1 progeny. Double homozygous F2 progeny obtained by crossing the F1 heterozygotes was identified phenotypically (hair loss) and genotypically (RCS-p+ gene determined by PCR). Retinal degenerative status was confirmed by optical coherence tomography (OCT) imaging, electroretinography (ERG), optokinetic (OKN) testing, superior colliculus (SC) electrophysiology, and by histology. The effect of xenografts was assessed by transplantation of human embryonic stem cell-derived retinal pigment epithelium (hESC-RPE) and human-induced pluripotent stem cell-derived RPE (iPS-RPE) into the eye. Morphological analysis was conducted based on hematoxylin and eosin (H&E) and immunostaining. Age-matched pigmented athymic nude rats were used as control.

Results

Approximately 6% of the F2 pups (11/172) were homozygous for RCS-p+ gene and Foxn1mu gene. Homozygous males crossed with heterozygous females resulted in 50% homozygous progeny for experimentation. OCT imaging demonstrated significant loss of retinal thickness in homozygous rats. H&E staining showed photoreceptor thickness reduced to 1–3 layers at 12 weeks of age. Progressive loss of visual function was evidenced by OKN testing, ERG, and SC electrophysiology. Transplantation experiments demonstrated survival of human-derived cells and absence of apparent immune rejection.

Conclusions

This new rat animal model developed by crossing RCS rats and athymic nude rats is suitable for conducting retinal transplantation experiments involving xenografts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Garg A, Yang J, Lee W, Tsang SH (2017) Stem cell therapies in retinal disorders. Cells 6. DOI https://doi.org/10.3390/cells6010004

    Article  Google Scholar 

  2. Jayakody SA, Gonzalez-Cordero A, Ali RR, Pearson RA (2015) Cellular strategies for retinal repair by photoreceptor replacement. Prog Retin Eye Res 46:31–66. https://doi.org/10.1016/j.preteyeres.2015.01.003

    Article  PubMed  Google Scholar 

  3. Jones MK, Lu B, Girman S, Wang S (2017) Cell-based therapeutic strategies for replacement and preservation in retinal degenerative diseases. Prog Retin Eye Res 58:1–27. https://doi.org/10.1016/j.preteyeres.2017.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  4. Seiler MJ, Aramant RB (2012) Cell replacement and visual restoration by retinal sheet transplants. Prog Retin Eye Res 31:661–687. https://doi.org/10.1016/j.preteyeres.2012.06.003

    Article  PubMed  PubMed Central  Google Scholar 

  5. Quigley HA, Iglesia DS (2004) Stem cells to replace the optic nerve. Eye (Lond) 18:1085–1088. https://doi.org/10.1038/sj.eye.6701577

    Article  CAS  Google Scholar 

  6. Thomas BB, Aramant RB, Sadda SR, Seiler MJ (2006) Retinal transplantation. A treatment strategy for retinal degenerative diseases. Adv Exp Med Biol 572:367–376

    Article  Google Scholar 

  7. Thomas BB, Seiler MJ, Sadda SR, Aramant RB (2004) Superior colliculus responses to light - preserved by transplantation in a slow degeneration rat model. Exp Eye Res 79:29–39. https://doi.org/10.1016/j.exer.2004.02.016

    Article  CAS  PubMed  Google Scholar 

  8. Seiler MJ, Lin RE, McLelland BT, Mathur A, Lin B, Sigman J, De Guzman AT, Kitzes LM, Aramant RB, Thomas BB (2017) Vision recovery and connectivity by fetal retinal sheet transplantation in an immunodeficient retinal degenerate rat model. Invest Ophthalmol Vis Sci 58:614–630. https://doi.org/10.1167/iovs.15-19028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Radtke ND, Aramant RB, Petry HM, Green PT, Pidwell DJ, Seiler MJ (2008) Vision improvement in retinal degeneration patients by implantation of retina together with retinal pigment epithelium. Am J Ophthalmol 146:172–182. https://doi.org/10.1016/j.ajo.2008.04.009

    Article  PubMed  Google Scholar 

  10. D’Cruz PM, Yasumura D, Weir J, Matthes MT, Abderrahim H, LaVail MM, Vollrath D (2000) Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet 9:645–651

    Article  Google Scholar 

  11. Vollrath D, Feng W, Duncan JL, Yasumura D, D’Cruz PM, Chappelow A, Matthes MT, Kay MA, LaVail MM (2001) Correction of the retinal dystrophy phenotype of the RCS rat by viral gene transfer of Mertk. Proc Natl Acad Sci U S A 98:12584–12589. https://doi.org/10.1073/pnas.221364198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu C, Li Y, Peng M, Laties AM, Wen R (1999) Activation of caspase-3 in the retina of transgenic rats with the rhodopsin mutation s334ter during photoreceptor degeneration. J Neurosci 19:4778–4785

    Article  CAS  Google Scholar 

  13. Ray A, Sun GJ, Chan L, Grzywacz NM, Weiland J, Lee EJ (2010) Morphological alterations in retinal neurons in the S334ter-line3 transgenic rat. Cell Tissue Res 339:481–491. https://doi.org/10.1007/s00441-009-0916-5

    Article  PubMed  Google Scholar 

  14. Zhu CL, Ji Y, Lee EJ, Grzywacz NM (2013) Spatiotemporal pattern of rod degeneration in the S334ter-line-3 rat model of retinitis pigmentosa. Cell Tissue Res 351:29–40. https://doi.org/10.1007/s00441-012-1522-5

    Article  PubMed  Google Scholar 

  15. Carr AJ, Vugler AA, Hikita ST, Lawrence JM, Gias C, Chen LL, Buchholz DE, Ahmado A, Semo M, Smart MJ, Hasan S, da Cruz L, Johnson LV, Clegg DO, Coffey PJ (2009) Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS One 4:e8152. https://doi.org/10.1371/journal.pone.0008152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Diniz B, Thomas P, Thomas B, Ribeiro R, Hu Y, Brant R, Ahuja A, Zhu D, Liu L, Koss M, Maia M, Chader G, Hinton DR, Humayun MS (2013) Subretinal implantation of retinal pigment epithelial cells derived from human embryonic stem cells: improved survival when implanted as a monolayer. Invest Ophthalmol Vis Sci 54:5087–5096. https://doi.org/10.1167/iovs.12-11239

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gregory-Evans K, Chang F, Hodges MD, Gregory-Evans CY (2009) Ex vivo gene therapy using intravitreal injection of GDNF-secreting mouse embryonic stem cells in a rat model of retinal degeneration. Mol Vis 15:962–973

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Park UC, Cho MS, Park JH, Kim SJ, Ku SY, Choi YM, Moon SY, Yu HG (2011) Subretinal transplantation of putative retinal pigment epithelial cells derived from human embryonic stem cells in rat retinal degeneration model. Clin Exp Reprod Med 38:216–221. https://doi.org/10.5653/cerm.2011.38.4.216

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pinilla I, Cuenca N, Sauve Y, Wang S, Lund RD (2007) Preservation of outer retina and its synaptic connectivity following subretinal injections of human RPE cells in the Royal College of Surgeons rat. Exp Eye Res 85:381–392. https://doi.org/10.1016/j.exer.2007.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang S, Girman S, Lu B, Bischoff N, Holmes T, Shearer R, Wright LS, Svendsen CN, Gamm DM, Lund RD (2008) Long-term vision rescue by human neural progenitors in a rat model of photoreceptor degeneration. Invest Ophthalmol Vis Sci 49:3201–3206. https://doi.org/10.1167/iovs.08-1831

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yanai A, Hafeli UO, Metcalfe AL, Soema P, Addo L, Gregory-Evans CY, Po K, Shan X, Moritz OL, Gregory-Evans K (2012) Focused magnetic stem cell targeting to the retina using superparamagnetic iron oxide nanoparticles. Cell Transplant 21:1137–1148. https://doi.org/10.3727/096368911x627435

    Article  PubMed  Google Scholar 

  22. Lin TC, Seiler MJ (2017) Assessment of safety and functional efficacy of stem cell-based therapeutic approaches using retinal degenerative animal models. Stem Cells Int 2017:9428176. https://doi.org/10.1155/2017/9428176

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nandrot EF, Dufour EM (2010) Mertk in daily retinal phagocytosis: a history in the making. Adv Exp Med Biol 664:133–140. https://doi.org/10.1007/978-1-4419-1399-9_16

    Article  CAS  PubMed  Google Scholar 

  24. Ambati J, Fowler BJ (2012) Mechanisms of age-related macular degeneration. Neuron 75:26–39. https://doi.org/10.1016/j.neuron.2012.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McGill TJ, Cottam B, Lu B, Wang S, Girman S, Tian C, Huhn SL, Lund RD, Capela A (2012) Transplantation of human central nervous system stem cells - neuroprotection in retinal degeneration. Eur J Neurosci 35:468–477. https://doi.org/10.1111/j.1460-9568.2011.07970.x

    Article  PubMed  Google Scholar 

  26. DiLoreto DA Jr, del Cerro C, Cox C, del Cerro M (1998) Changes in visually guided behavior of Royal College of Surgeons rats as a function of age: a histologic, morphometric, and functional study. Invest Ophthalmol Vis Sci 39:1058–1063

    PubMed  Google Scholar 

  27. Feng W, Yasumura D, Matthes MT, LaVail MM, Vollrath D (2002) Mertk triggers uptake of photoreceptor outer segments during phagocytosis by cultured retinal pigment epithelial cells. J Biol Chem 277:17016–17022. https://doi.org/10.1074/jbc.M107876200

    Article  CAS  PubMed  Google Scholar 

  28. Mullen RJ, LaVail MM (1976) Inherited retinal dystrophy: primary defect in pigment epithelium determined with experimental rat chimeras. Science 192:799–801

    Article  CAS  Google Scholar 

  29. Goldman AI, O’Brien PJ (1978) Phagocytosis in the retinal pigment epithelium of the RCS rat. Science 201:1023–1025

    Article  CAS  Google Scholar 

  30. Sauve Y, Girman SV, Wang S, Lawrence JM, Lund RD (2001) Progressive visual sensitivity loss in the Royal College of Surgeons rat: perimetric study in the superior colliculus. Neuroscience 103:51–63

    Article  CAS  Google Scholar 

  31. Kamao H, Mandai M, Okamoto S, Sakai N, Suga A, Sugita S, Kiryu J, Takahashi M (2014) Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Rep 2:205–218. https://doi.org/10.1016/j.stemcr.2013.12.007

    Article  CAS  Google Scholar 

  32. Lu B, Malcuit C, Wang S, Girman S, Francis P, Lemieux L, Lanza R, Lund R (2009) Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells 27:2126–2135. https://doi.org/10.1002/stem.149

    Article  CAS  PubMed  Google Scholar 

  33. Cooper AE, Cho JH, Menges S, Masood S, Xie J, Yang J, Klassen H (2016) Immunosuppressive treatment can alter visual performance in the Royal College of Surgeons rat. J Ocul Pharmacol Ther 32:296–303. https://doi.org/10.1089/jop.2015.0134

    Article  CAS  PubMed  Google Scholar 

  34. Anderson AJ, Haus DL, Hooshmand MJ, Perez H, Sontag CJ, Cummings BJ (2011) Achieving stable human stem cell engraftment and survival in the CNS: is the future of regenerative medicine immunodeficient? Regen Med 6:367–406. https://doi.org/10.2217/rme.11.22

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhu J, Cifuentes H, Reynolds J, Lamba DA (2017) Immunosuppression via loss of IL2rgamma enhances long-term functional integration of hESC-derived photoreceptors in the mouse retina. Cell Stem Cell 20:374–384 e375. https://doi.org/10.1016/j.stem.2016.11.019

    Article  CAS  PubMed  Google Scholar 

  36. Seiler MJ, Aramant RB, Jones MK, Ferguson DL, Bryda EC, Keirstead HS (2014) A new immunodeficient pigmented retinal degenerate rat strain to study transplantation of human cells without immunosuppression. Graefes Arch Clin Exp Ophthalmol 252:1079–1092. https://doi.org/10.1007/s00417-014-2638-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hirasawa T, Ohara T, Makino S (1997) Genetic typing of the mouse ob mutation by PCR and restriction enzyme analysis. Exp Anim 46:75–78

    Article  CAS  Google Scholar 

  38. Thomas BB, Seiler MJ, Sadda SR, Coffey PJ, Aramant RB (2004) Optokinetic test to evaluate visual acuity of each eye independently. J Neurosci Methods 138:7–13. https://doi.org/10.1016/j.jneumeth.2004.03.007

    Article  PubMed  Google Scholar 

  39. Siminoff R, Schwassmann HO, Kruger L (1966) An electrophysiological study of the visual projection to the superior colliculus of the rat. J Comp Neurol 127:435–444. https://doi.org/10.1002/cne.901270402

    Article  CAS  PubMed  Google Scholar 

  40. Thomas BB, Aramant RB, Sadda SR, Seiler MJ (2005) Light response differences in the superior colliculus of albino and pigmented rats. Neurosci Lett 385:143–147. https://doi.org/10.1016/j.neulet.2005.05.034

    Article  CAS  PubMed  Google Scholar 

  41. Ferrer M, Corneo B, Davis J, Wan Q, Miyagishima KJ, King R, Maminishkis A, Marugan J, Sharma R, Shure M, Temple S, Miller S, Bharti K (2014) A multiplex high-throughput gene expression assay to simultaneously detect disease and functional markers in induced pluripotent stem cell-derived retinal pigment epithelium. Stem Cells Transl Med 3:911–922. https://doi.org/10.5966/sctm.2013-0192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miyagishima KJ, Wan Q, Corneo B, Sharma R, Lotfi MR, Boles NC, Hua F, Maminishkis A, Zhang C, Blenkinsop T, Khristov V, Jha BS, Memon OS, D’Souza S, Temple S, Miller SS, Bharti K (2016) In pursuit of authenticity: induced pluripotent stem cell-derived retinal pigment epithelium for clinical applications. Stem Cells Transl Med. https://doi.org/10.5966/sctm.2016-0037

    Article  CAS  Google Scholar 

  43. Woch G, Aramant RB, Seiler MJ, Sagdullaev BT, McCall MA (2001) Retinal transplants restore visually evoked responses in rats with photoreceptor degeneration. Invest Ophthalmol Vis Sci 42:1669–1676

    CAS  PubMed  Google Scholar 

  44. Sagdullaev BT, Aramant RB, Seiler MJ, Woch G, McCall MA (2003) Retinal transplantation-induced recovery of retinotectal visual function in a rodent model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 44:1686–1695

    Article  Google Scholar 

  45. Thomas BB, Zhu D, Zhang L, Thomas PB, Hu Y, Nazari H, Stefanini F, Falabella P, Clegg DO, Hinton DR, Humayun MS (2016) Survival and functionality of hESC-derived retinal pigment epithelium cells cultured as a monolayer on polymer substrates transplanted in RCS rats. Invest Ophthalmol Vis Sci 57:2877–2887. https://doi.org/10.1167/iovs.16-19238

    Article  CAS  PubMed  Google Scholar 

  46. Clarke L, Ballios BG, van der Kooy D (2012) Generation and clonal isolation of retinal stem cells from human embryonic stem cells. Eur J Neurosci 36:1951–1959. https://doi.org/10.1111/j.1460-9568.2012.08123.x

    Article  PubMed  PubMed Central  Google Scholar 

  47. Guest JD, Rao A, Olson L, Bunge MB, Bunge RP (1997) The ability of human Schwann cell grafts to promote regeneration in the transected nude rat spinal cord. Exp Neurol 148:502–522. https://doi.org/10.1006/exnr.1997.6693

    Article  CAS  PubMed  Google Scholar 

  48. Hambright D, Park KY, Brooks M, McKay R, Swaroop A, Nasonkin IO (2012) Long-term survival and differentiation of retinal neurons derived from human embryonic stem cell lines in un-immunosuppressed mouse retina. Mol Vis 18:920–936

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lamba DA, Karl MO, Ware CB, Reh TA (2006) Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci U S A 103:12769–12774. https://doi.org/10.1073/pnas.0601990103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lamba DA, McUsic A, Hirata RK, Wang PR, Russell D, Reh TA (2010) Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS One 5:e8763. https://doi.org/10.1371/journal.pone.0008763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Meyer JS, Howden SE, Wallace KA, Verhoeven AD, Wright LS, Capowski EE, Pinilla I, Martin JM, Tian S, Stewart R, Pattnaik B, Thomson JA, Gamm DM (2011) Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells 29:1206–1218. https://doi.org/10.1002/stem.674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tucker BA, Park IH, Qi SD, Klassen HJ, Jiang C, Yao J, Redenti S, Daley GQ, Young MJ (2011) Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice. PLoS One 6:e18992. https://doi.org/10.1371/journal.pone.0018992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vugler AA (2010) Progress toward the maintenance and repair of degenerating retinal circuitry. Retina 30:983–1001. https://doi.org/10.1097/IAE.0b013e3181e2a680

    Article  PubMed  Google Scholar 

  54. Yue F, Johkura K, Shirasawa S, Yokoyama T, Inoue Y, Tomotsune D, Sasaki K (2010) Differentiation of primate ES cells into retinal cells induced by ES cell-derived pigmented cells. Biochem Biophys Res Commun 394:877–883. https://doi.org/10.1016/j.bbrc.2010.03.008

    Article  CAS  PubMed  Google Scholar 

  55. Nasonkin I, Mahairaki V, Xu L, Hatfield G, Cummings BJ, Eberhart C, Ryugo DK, Maric D, Bar E, Koliatsos VE (2009) Long-term, stable differentiation of human embryonic stem cell-derived neural precursors grafted into the adult mammalian neostriatum. Stem Cells 27:2414–2426. https://doi.org/10.1002/stem.177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Aramant RB, Seiler MJ (2002) Transplanted sheets of human retina and retinal pigment epithelium develop normally in nude rats. Exp Eye Res 75:115–125

    Article  CAS  Google Scholar 

  57. Granholm AC, Eriksdotter-Nilsson M, Stromberg I, Stieg P, Seiger A, Bygdeman M, Geffard M, Oertel W, Dahl D, Olson L et al (1989) Morphological and electrophysiological studies of human hippocampal transplants in the anterior eye chamber of athymic nude rats. Exp Neurol 104:162–171

    Article  CAS  Google Scholar 

  58. Hall M, Wang Y, Granholm AC, Stevens JO, Young D, Hoffer BJ (1992) Comparison of fetal rabbit brain xenografts to three different strains of athymic nude rats: electrophysiological and immunohistochemical studies of intraocular grafts. Cell Transplant 1:71–82

    Article  CAS  Google Scholar 

  59. Wang S, Lu B, Girman S, Holmes T, Bischoff N, Lund RD (2008) Morphological and functional rescue in RCS rats after RPE cell line transplantation at a later stage of degeneration. Invest Ophthalmol Vis Sci 49:416–421. https://doi.org/10.1167/iovs.07-0992

    Article  PubMed  Google Scholar 

  60. Grisanti S, Szurman P, Jordan J, Kociok N, Bartz-Schmidt KU, Heimann K (2002) Xenotransplantation of retinal pigment epithelial cells into RCS rats. Jpn J Ophthalmol 46:36–44

    Article  Google Scholar 

  61. Lund RD, Wang S, Klimanskaya I, Holmes T, Ramos-Kelsey R, Lu B, Girman S, Bischoff N, Sauve Y, Lanza R (2006) Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells 8:189–199. https://doi.org/10.1089/clo.2006.8.189

    Article  CAS  PubMed  Google Scholar 

  62. Cibulskyte D, Kaalund H, Pedersen M, Horlyck A, Marcussen N, Hansen HE, Madsen M, Mortensen J (2005) Chronic cyclosporine nephrotoxicity: a pig model. Transplant Proc 37:3298–3301. https://doi.org/10.1016/j.transproceed.2005.09.004

    Article  CAS  PubMed  Google Scholar 

  63. Thliveris JA, Yatscoff RW, Lukowski MP, Copeland KR (1991) Cyclosporine nephrotoxicity--experimental models. Clin Biochem 24:93–95

    Article  CAS  Google Scholar 

  64. Adachi K, Takahashi S, Yamauchi K, Mounai N, Tanabu R, Nakazawa M (2016) Optical coherence tomography of retinal degeneration in Royal College of Surgeons rats and its correlation with morphology and electroretinography. PLoS One 11:e0162835. https://doi.org/10.1371/journal.pone.0162835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rosch S, Aretzweiler C, Muller F, Walter P (2017) Evaluation of retinal function and morphology of the pink-eyed Royal College of Surgeons (RCS) rat: a comparative study of in vivo and in vitro methods. Curr Eye Res 42:273–281. https://doi.org/10.1080/02713683.2016.1179333

    Article  PubMed  Google Scholar 

  66. Tzameret A, Sher I, Belkin M, Treves AJ, Meir A, Nagler A, Levkovitch-Verbin H, Barshack I, Rosner M, Rotenstreich Y (2014) Transplantation of human bone marrow mesenchymal stem cells as a thin subretinal layer ameliorates retinal degeneration in a rat model of retinal dystrophy. Exp Eye Res 118:135–144. https://doi.org/10.1016/j.exer.2013.10.023

    Article  CAS  PubMed  Google Scholar 

  67. Girman SV, Wang S, Lund RD (2005) Time course of deterioration of rod and cone function in RCS rat and the effects of subretinal cell grafting: a light- and dark-adaptation study. Vis Res 45:343–354. https://doi.org/10.1016/j.visres.2004.08.023

    Article  CAS  PubMed  Google Scholar 

  68. Birch DG, Bennett LD, Duncan JL, Weleber RG, Pennesi ME (2016) Long-term follow-up of patients with retinitis pigmentosa receiving intraocular ciliary neurotrophic factor implants. Am J Ophthalmol 170:10–14. https://doi.org/10.1016/j.ajo.2016.07.013

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by CIRM TR4-06648 (MJS), CIRM DT3 (MSH), Bright Focus Foundation (BBT), and Research to Prevent Blindness (USC Roski Eye Institute). We want to thank Dr. Kapil Bharti (National Institute of Health, Bethesda, MD, USA) for providing the iPS-RPE, Xiaopeng Wang (USC), and Bryce McLelland, Anuradha Mathur, Jessica Quynh Huong Duong, Marissa Mahtob Marie Monazzami, and Luxi Zhang (UC Irvine) for technical assistance.

Funding

Supported by CIRM (MJS, MSH, DRH), Bright Focus Foundation (BBT), and Research to Prevent Blindness (USC Roski Eye Institute). The sponsor had no role in the design or conduct of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biju B. Thomas.

Ethics declarations

Conflict of interest

MJS has proprietary interest in the instrument and method for transplanting retinal sheets (Ocular Transplantation LLC). MSH and DRH are co-founders and consultants to Regenerative Patch Technologies (RPT). The other authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements) or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of the animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of University of Southern California Institutional Animal Care and Use Committee (IACUC).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, B.B., Zhu, D., Lin, TC. et al. A new immunodeficient retinal dystrophic rat model for transplantation studies using human-derived cells. Graefes Arch Clin Exp Ophthalmol 256, 2113–2125 (2018). https://doi.org/10.1007/s00417-018-4134-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-018-4134-2

Keywords

Navigation