Skip to main content

Advertisement

Log in

Binocular and accommodative function in the controlled randomized clinical trial MiSight® Assessment Study Spain (MASS)

  • Pediatrics
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the binocular and accommodative function in children wearing dual focus (DF) MiSight® contact lenses (CLs) for myopia control compared with children wearing single-vision (SV) spectacles.

Methods

This was a randomized, controlled clinical trial involving subjects aged 8 to 12, with myopia ranging from − 0.75 to − 4.00D and astigmatism < 1.00D, allocated to MiSight® study CLs group or control group wearing SV. Binocular and accommodative function was determined at baseline, 12-, and 24-month visits, assessed by the following sequence of tests: distance and near horizontal phoria, accommodative convergence/accommodation (AC/A) ratio, stereopsis, accommodative amplitude (AA), and accommodative response (AR) at 33, 25 and 20 cm.

Results

Seventy-four children completed the study: 41 in the CL group and 33 in the SV group. CLs group did not show any significant differences in binocular and accommodative measurements throughout the study. In control group, distance and near phoria, stereopsis, AC/A and AR at 20 cm did not show any significant change, but AA, AR at 33 cm and AR at 25 cm were greater at 24-month visit compared with baseline (p < 0.05).

Conclusions

DF lenses do not change the binocular and accommodative function in children wearing dual focus CLs.

Trial registration

NCT01917110

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Saw SM, Wu HM, Seet B, Wong TY, Yap E, Chia KS, Lee L (2001) Academic achievement, close up work parameters, and myopia in Singapore military conscripts. Br J Ophthalmol 85:855–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mutti DO, Mitchell GL, Moeschberger ML, Jones LA, Zadnik K (2002) Parental myopia, near work, school achievement, and children’s refractive error. Invest Ophthalmol Vis Sci 43:3633–3640

    PubMed  Google Scholar 

  3. Ip JM, Saw S-M, Rose KA, Morgan IG, Kifley A, Wang JJ, Mitchell P (2008) Role of near work in myopia: findings in a sample of Australian school children. Invest Ophthalmol Vis Sci 49:2903–2910. https://doi.org/10.1167/iovs.07-0804

    Article  PubMed  Google Scholar 

  4. Fernández-Montero A, Olmo-Jimenez JM, Olmo N, Bes-Rastrollo M, Moreno-Galarraga L, Moreno-Montañés J, Martínez-González MA (2015) The impact of computer use in myopia progression: a cohort study in Spain. Prev Med 71:67–71. https://doi.org/10.1016/j.ypmed.2014.12.005

    Article  PubMed  Google Scholar 

  5. Sherwin JC, Reacher MH, Keogh RH, Khawaja AP, Mackey DA, Foster PJ (2012) The association between time spent outdoors and myopia in children and adolescents: a systematic review and meta-analysis. Ophthalmology 119:2141–2151. https://doi.org/10.1016/j.ophtha.2012.04.020

    Article  PubMed  Google Scholar 

  6. Guggenheim JA, Northstone K, McMahon G, Ness AR, Deere K, Mattocks C, Williams C (2012) Time outdoors and physical activity as predictors of incident myopia in childhood: a prospective cohort study. Invest Ophthalmol Vis Sci 53:2856–2865. https://doi.org/10.1167/iovs.11-9091

    Article  PubMed  PubMed Central  Google Scholar 

  7. Torii H, Kurihara T, Seko Y, Negishi K, Ohnuma K, Inaba T, Tsubota K (2017) Violet light exposure can be a preventive strategy against myopia progression. Ebiomedicine 15:210–219. https://doi.org/10.1016/j.ebiom.2016.12.007

    Article  PubMed  Google Scholar 

  8. Rose KA, Morgan IG, Ip J, Kifley A, Huynh S, Smith W, Mitchell P (2008) Outdoor activity reduces the prevalence of myopia in children. Ophthalmology 115:1279–1285. https://doi.org/10.1016/j.ophtha.2007.12.019

    Article  PubMed  Google Scholar 

  9. Aller TA, Liu M, Wildsoet CF (2016) Myopia control with bifocal contact lenses: a randomized clinical trial. Optom Vis Sci 93:344–352. https://doi.org/10.1097/opx.0000000000000808

    Article  PubMed  Google Scholar 

  10. Liu Y, Wildsoet C (2011) The effect of two-zone concentric bifocal spectacle lenses on refractive error development and eye growth in young chicks. Invest Ophthalmol Vis Sci 52:1078–1086. https://doi.org/10.1167/iovs.10-5716

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liu Y, Wildsoet C (2012) The effective add inherent in 2-zone negative lenses inhibits eye growth in myopic young chicks. Invest Ophthalmol Vis Sci 53:5085–5093. https://doi.org/10.1167/iovs.12-9628

    Article  PubMed  PubMed Central  Google Scholar 

  12. Benavente-Perez A, Nour A, Troilo D (2014) Axial eye growth and refractive error development can be modified by exposing the peripheral retina to relative myopic or hyperopic defocus. Invest Ophthalmol Vis Sci 55:6765–6773. https://doi.org/10.1167/iovs.14-14524

    Article  PubMed  PubMed Central  Google Scholar 

  13. Smith EL 3rd (1998) Spectacle lenses and emmetropization: the role of optical defocus in regulating ocular development. Optom Vis Sci 75:388–398

    Article  PubMed  Google Scholar 

  14. Jimenez JR, Durban JJ, Anera RG (2002) Maximum disparity with acuvue bifocal contact lenses with changes in illumination. Optom Vis Sci 79:170–174

    Article  CAS  PubMed  Google Scholar 

  15. Scheiman M, Wick B (2008) Clinical management of binocular vision: heterophoric, accommodative, and eye movement disorders. Wolters Kluwer Health/lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  16. Alpern M (1949) Accommodation and convergence with contact lenses. Am J Optom Arch Am Acad Optom 26:379–387

    Article  CAS  PubMed  Google Scholar 

  17. Robertson DM, Ogle KN, Dyer JA (1967) Influence of contact lenses on accommodation: theoretic considerations and clinical study. Am J Ophthalmol 64:860–871

    Article  CAS  PubMed  Google Scholar 

  18. Carney LG, Woo GC (1977) Comparison of accommodation with rigid and flexible contact lenses. Am J Optom Physiol Optic 54:595–597

    Article  CAS  Google Scholar 

  19. Hunt OA, Wolffsohn JS, García-Resúa C (2006) Ocular motor triad with single vision contact lenses compared to spectacle lenses. Cont Lens Anterior Eye 29:239–245

    Article  PubMed  Google Scholar 

  20. Jimenez R, Martinez-Almeida L, Salas C, Ortiz C (2011) Contact lenses vs spectacles in myopes: is there any difference in accommodative and binocular function? Graefes Arch Clin Exp Ophthalmol 249:925–935. https://doi.org/10.1007/s00417-010-1570-z

    Article  PubMed  Google Scholar 

  21. Fulk GW, Cyert LA, Parker DE, West RW (2003) The effect of changing from glasses to soft contact lenses on myopia progression in adolescents. Ophthalmic Physiol Opt 23:71–77

    Article  PubMed  Google Scholar 

  22. Felipe-Marquez G, Nombela-Palomo M, Palomo-Alvarez C, Cacho I, Nieto-Bona A (2017) Binocular function changes produced in response to overnight orthokeratology. Graefes Arch Clin Exp Ophthalmol 255:179–188. https://doi.org/10.1007/s00417-016-3554-0

    Article  PubMed  Google Scholar 

  23. Felipe-Marquez G, Nombela-Palomo M, Cacho I, Nieto-Bona A (2015) Accommodative changes produced in response to overnight orthokeratology. Graefe’s Arch Clin Exp Ophthalmol 253:619–626. https://doi.org/10.1007/s00417-014-2865-2.

    Article  Google Scholar 

  24. Ruiz-Pomeda A, Perez-Sanchez B, Valls I, Prieto-Garrido FL, Gutierrez-Ortega R, Villa-Collar C (2018) MiSight Assessment Study Spain (MASS). A 2-year randomized clinical trial. Graefes Arch Clin Exp Ophthalmol. https://doi.org/10.1007/s00417-018-3906-z

  25. Anstice NS, Phillips JR (2011) Effect of dual-focus soft contact lens wear on axial myopia progression in children. Ophthalmology 118:1152–1161. https://doi.org/10.1016/j.ophtha.2010.10.035

    Article  PubMed  Google Scholar 

  26. Ruiz-Pomeda A, Pérez-Sánchez B, Prieto-Garrido FL, Gutiérrez-Ortega R, Villa-Collar C (2018) MiSight Assessment Study Spain: adverse events, tear film osmolarity, and discontinuations. Eye Contact Lens. https://doi.org/10.1097/ICL.0000000000000484

  27. Pomeda AR, Pérez-Sánchez B, Cañadas Suárez MDP, Prieto Garrido FL, Gutiérrez-Ortega R, Villa-Collar C (2017) MiSight Assessment Study Spain: a comparison of vision-related quality-of-life measures between MiSight contact lenses and single-vision spectacles. Eye Contact Lens. https://doi.org/10.1097/ICL.0000000000000413

  28. Jiménez R, Pérez MA, García JA, González MD (2004) Statistical normal values of visual parameters that characterize binocular function in children. Ophthalmic Physiol Opt 24:528–542

    Article  PubMed  Google Scholar 

  29. Scheiman M, Gallaway M, Frantz KA, Peters RJ, Hatch S, Cuff M et al (2003) Nearpoint of convergence: test procedure, target selection, and normative data. Optom Vis Sci 80:214–225

    Article  PubMed  Google Scholar 

  30. Gwiazda J, Thorn F, Bauer J, Held R (1993) Myopic children show insufficient accommodative response to blur. Invest Ophthalmol Vis Sci 34:690–694

    CAS  PubMed  Google Scholar 

  31. Nakatsuka C, Hasebe S, Nonaka F, Ohtsuki H (2005) Accommodative lag under habitual seeing conditions: comparison between myopic and emmetropic children. Jpn J Ophthalmol 49:189–194

    Article  PubMed  Google Scholar 

  32. Kang P, Wildsoet CF (2016) Acute and short-term changes in visual function with multifocal soft contact lens wear in young adults. Cont Lens Anterior Eye 39:133–140. https://doi.org/10.1016/j.clae.2015.09.004

    Article  PubMed  Google Scholar 

  33. Maples WC, Hoenes R (2007) Near point of convergence norms measured in elementary school children. Optom Vis Sci 84:224–228

    Article  PubMed  Google Scholar 

  34. Gwiazda J, Grice K, Thorn F (1999) Response AC/A ratios are elevated in myopic children. Ophthalmic Physiol Opt 19:173–179

    Article  CAS  PubMed  Google Scholar 

  35. Ciuffreda KJ, Rosenfield M, Chen HW (1997) The AC/a ratio, age and presbyopia. Ophthalmic Physiol Opt 17:307–315

    Article  CAS  PubMed  Google Scholar 

  36. Mutti DO, Jones LA, Moeschberger ML, Zadnik K (2000) AC/A ratio, age, and refractive error in children. Invest Ophthalmol Vis Sci 41:2469–2478

    CAS  PubMed  Google Scholar 

  37. Jiménez R, Martínez-Almeida L, Salas C, Ortíz C (2011) Contact lenses vs spectacles in myopes: is there any difference in accommodative and binocular function? Graefe’s Arch Clin Exp Ophthalmol 249:925–935. https://doi.org/10.1007/s00417-010-1570-z

    Article  Google Scholar 

  38. Chen AH, O’Leary DJ (2002) Are there age differences in the accommodative response curve between 3 and 14 years of age? Ophthalmic Physiol Opt 22:119–125

    Article  PubMed  Google Scholar 

  39. Anderson HA, Glasser A, Manny RE, Stuebing KK (2010) Age-related changes in accommodative dynamics from preschool to adulthood. Invest Ophthalmol Vis Sci 51:614–622. https://doi.org/10.1167/iovs.09-3653

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sreenivasan V, Irving EL, Bobier WR (2011) Effect of near adds on the variability of accommodative response in myopic children. Ophthalmic Physiol Opt 31:145–154. https://doi.org/10.1111/j.1475-1313.2010.00818.x

    Article  PubMed  Google Scholar 

  41. Mordi JA, Ciuffreda KJ (1998) Static aspects of accommodation: age and presbyopia. Vis Res 38:1643–1653

    Article  CAS  PubMed  Google Scholar 

  42. Charman WN, Radhakrishnan H (2009) Accommodation, pupil diameter and myopia. Ophthalmic Physiol Opt 29:72–79. https://doi.org/10.1111/j.1475-1313.2008.00611.x

    Article  PubMed  Google Scholar 

  43. Abbott ML, Schmid KL, Strang NC (1998) Differences in the accommodation stimulus response curves of adult myopes and emmetropes. Ophthalmic Physiol Opt 18:13–20

    Article  CAS  PubMed  Google Scholar 

  44. Norton TT, Gamlin PD (1999) The near response, emmetropia and myopia. Ophthalmic Physiol Opt 19:79–80

    Article  CAS  PubMed  Google Scholar 

  45. Mutti DO, Mitchell GL, Hayes JR, Jones LA, Moeschberger ML, Cotter SA et al (2006) Accommodative lag before and after the onset of myopia. Invest Ophthalmol Vis Sci 47:837–846

    Article  PubMed  Google Scholar 

  46. Gong CR, Troilo D, Richdale K (2017) Accommodation and phoria in children wearing multifocal contact lenses. Optom Vis Sci 94:353–360. https://doi.org/10.1097/OPX.0000000000001044.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Paune J, Thivent S, Armengol J, Quevedo L, Faria-Ribeiro M, Gonzalez-Meijome JM (2016) Changes in peripheral refraction, higher-order aberrations, and accommodative lag with a radial refractive gradient contact lens in young myopes. Eye Contact Lens 42:380–387. https://doi.org/10.1097/icl.0000000000000222

    Article  PubMed  Google Scholar 

  48. Goss DA (1986) Effect of bifocal lenses on the rate of childhood myopia progression. Am J Optom Physiol Optic 63:135–141

    Article  CAS  Google Scholar 

  49. Goss DA, Grosvenor T (1990) Rates of childhood myopia progression with bifocals as a function of nearpoint phoria: consistency of three studies. Optom Vis Sci 67:637–640

    Article  CAS  PubMed  Google Scholar 

  50. Fulk GW, Cyert LA, Parker DE (2000) A randomized trial of the effect of single-vision vs. bifocal lenses on myopia progression in children with esophoria. Optom Vis Sci 77:395–401

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Peter Bonney for proofreading the article.

Funding

CooperVision S.L. Spain provided financial support. CooperVision S.L. provided the study contact lenses and the funding to carry out the clinical trial. The sponsor had no role in the design or conduct of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Ruiz-Pomeda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (CEI-R, Regional Research Ethics Committee of the Community of Madrid, Spain) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Pomeda, A., Pérez-Sánchez, B., Cañadas, P. et al. Binocular and accommodative function in the controlled randomized clinical trial MiSight® Assessment Study Spain (MASS). Graefes Arch Clin Exp Ophthalmol 257, 207–215 (2019). https://doi.org/10.1007/s00417-018-4115-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-018-4115-5

Keywords

Navigation