Skip to main content

Advertisement

Log in

Dimensions of the ciliary muscles of Brücke, Müller and Iwanoff and their associations with axial length and glaucoma

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

To assess the dimensions of Brücke’s muscle, as the longitudinal portion, and of Müller’s muscle and Iwanoff’s muscle combined as circular and radial/reticular portions of the ciliary muscle.

Methods

The histomorphometric study included human globes that had been enucleated due to an ocular tumor or end-stage glaucoma. After immunohistochemical staining of the ciliary muscles, the histology slides were examined under a light microscope applying a digitized image analysis system.

Results

The study included 55 globes [axial length 25.6 ± 3.0 mm (range 21.0 mm–36.0 mm)] from 55 patients [mean age, 33.7 ± 18.3 years (range:1–66 years)]. Length of Brücke’s muscle (mean 3.40 ± 0.76 mm) increased with longer axial length (P < 0.001; regression coefficient beta: 0.52) and was not significantly associated with age (P = 0.12), presence of glaucoma (P = 0.11) or Brücke’s muscle thickness at the scleral spur (P = 0.32), at the site of the maximum thickness of the ciliary body (P = 0.84) or at the posterior end of Müller’s/Iwanoff’s muscle (P = 0.66), or with thickness (P = 0.29) and cross-sectional area (P = 0.85) of Müller’s/Iwanoff’s muscle. Mean distance between Brücke’s muscle end and the ora serrata measured 1.73 ± 1.13 mm and increased with longer axial length (P < 0.001; beta: 0.46). Distance from the scleral spur to the ora serrata (mean: 4.94 ± 1.42 mm; range: 3.08–9.09 mm) increased with longer axial length (P < 0.001; beta: 0.61). Maximal thickness (mean: 245 ± 125 μm) and cross-section area (mean: 0.19 ± 0.11 mm2) of Müller’s/Iwanoff’s muscle decreased significantly with the diagnosis of glaucoma (P = 0.02;beta:-0.38) and longer axial length (P = 0.03; beta: -0.35).

Conclusions

Length of Brücke’s muscle increased with axial length of the globe, while its cross-sectional area was independent of axial length. Müller’s/Iwanoff’s muscle decreased in cross-sectional area with longer axis, and in particular with the presence of glaucoma, while the dimensions of Brücke’s muscle were not related to glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Iwanoff A, Arnold J (1874) Mikroscopische Anatomie des Uvealtraktus und der Linse. In: Graefe A, Saemisch T (eds) Handbuch der gesamten Augenheilkunde, vol 1. Verlag Wilhelm Engelmann, Leipzig, pp 265–320

    Google Scholar 

  2. Herzog H (1902) Über die Entwicklung der Binnenmuskulatur des Auges. Arch Mikrosk Anat 60:517–586

    Article  Google Scholar 

  3. Seefelder R, Wolfrum C (1906) Zur Entwicklung der vorderen Kammer und des Kammerwinkels beim Menschen, nebst Bemerkungen über ihre Entstehung bei Tieren. Graefes Arch Clin Exp Ophthalmol 63:430–451

    Article  Google Scholar 

  4. Salzmann M (1912) Anatomie und Histologie des menschlichen Augapfels im Normalzustande, seine Entwicklung und sein Altern. Verlag Franz Deuticke, Leipzig, Wien, pp 120–124

    Google Scholar 

  5. Fuchs E (1928) Über den Ciliarmuskel. Graefes Arch Clin Exp Ophthalmol 120:735–741

    Google Scholar 

  6. Lauber H (1936) Der Strahlenkörper (Corpus ciliare). In Handbuch der mikroskopischen Anatomie des Menschen, Haut und Sinnesorgane, Auge. In: Mollendorf WV (ed.), Vol. 3. pt. 2; Springer Verlag Berlin. pp:134–176

  7. Rohen JW (1956) Über den Ansatz der Ciliarmuskulatur im Bereich des Kammerwinkels. Ophthalmologica 131:51

    Article  CAS  Google Scholar 

  8. van der Zypen E (1970) Licht- und elektronenmikroskopische Untersuchungen über die Altersveränderungen am M. ciliaris im menschlichen Auge. Graefes Arch Clin Exp Ophthalmol 179:332–357

    Article  Google Scholar 

  9. Rohen JW, Zimmermann A (1970) Altersveränderungen des Ciliarepithels beim menschen. [age changes of the ciliary epithelium in the human eye]. Albrecht Von Graefes Arch Klin Exp Ophthalmol 179:302–317

    Article  CAS  Google Scholar 

  10. Rohen JW, Eichhorn M, Kaufman PL, Erickson-Lamy KA (1990) Ciliary neuromuscular morphology in cynomolgus monkeys after ciliary ganglionectomy. Graefes Arch Clin Exp Ophthalmol 228:49–54

    Article  CAS  Google Scholar 

  11. Gabelt BT, Kaufman PL, Polansky JR (1990) Ciliary muscle muscarinic binding sites, choline acetyltransferase, and acetylcholinesterase in aging rhesus monkeys. Invest Ophthalmol Vis Sci 31:2431–2436

    CAS  PubMed  Google Scholar 

  12. Erickson-Lamy KA, Johnson CD, True-Gabelt B, Kaufman PL (1990) Ciliary muscle choline acetyltransferase and acetylcholinesterase after ciliary ganglionectomy. Exp Eye Res 51:295–299

    Article  CAS  Google Scholar 

  13. Tamm ER, Flügel C, Stefani FH, Lütjen-Drecoll E (1994) Nerve endings with structural characteristics of mechanoreceptors in the human scleral spur. Invest Ophthalmol Vis Sci 35:1157–1166

    CAS  PubMed  Google Scholar 

  14. Tamm E, Lütjen-Drecoll E, Jungkunz W, Rohen JW (1991) Posterior attachment of ciliary muscle in young, accommodating old, presbyopic monkeys. Invest Ophthalmol Vis Sci 32:1678–1692

    CAS  PubMed  Google Scholar 

  15. Croft MA, Kaufman PL, Crawford KS, Neider MW, Glasser A, Bito LZ (1998) Accommodation dynamics in aging rhesus monkeys. Am J Physiol 275(6 Pt2):R1885–R1897

    CAS  PubMed  Google Scholar 

  16. Glasser A, Kaufman PL (1999) The mechanism of accommodation in primates. Ophthalmology 106:863–872

    Article  CAS  Google Scholar 

  17. Croft MA, Glasser A, Heatley G, McDonald J, Ebbert T, Dahl DB, Nadkarni NV, Kaufman PL (2006) Accommodative ciliary body and lens function in rhesus monkeys, I: normal lens, zonule and ciliary process configuration in the iridectomized eye. Invest Ophthalmol Vis Sci 47:1076–1086

    Article  Google Scholar 

  18. Flügel-Koch C, Neuhuber WL, Kaufman PL, Lütjen-Drecoll E (2009) Morphologic indication for proprioception in the human ciliary muscle. Invest Ophthalmol Vis Sci 50:5529–5536

    Article  Google Scholar 

  19. Overby DR, Bertrand J, Schicht M, Paulsen F, Stamer WD, Lütjen-Drecoll E (2014) The structure of the trabecular meshwork, its connections to the ciliary muscle, and the effect of pilocarpine on outflow facility in mice. Invest Ophthalmol Vis Sci 55:3727–3736

    Article  CAS  Google Scholar 

  20. Croft MA, Lütjen-Drecoll E, Kaufman PL (2017) Age-related posterior ciliary muscle restriction - a link between trabecular meshwork and optic nerve head pathophysiology. Exp Eye Res 158:187–189

    Article  CAS  Google Scholar 

  21. Rohen JW, Lütjen E, Bárány E (1967) The relation between the ciliary muscle and the trabecular meshwork and its importance for the effect of miotics on aqueous outflow resistance. A study in two contrasting monkey species, Macaca irus and Cercopithecus aethiops. Albrecht Von Graefes Arch Klin Exp Ophthalmol 172:23–47

    Article  CAS  Google Scholar 

  22. Park CY, Lee JK, Kahook MY, Schultz JS, Zhang C, Chuck RS (2016) Revisiting ciliary muscle tendons and their connections with the trabecular meshwork by two photon excitation microscopic imaging. Invest Ophthalmol Vis Sci 57:1096–1105

    Article  CAS  Google Scholar 

  23. Pucker AD, Sinnott LT, Kao CY, Bailey MD (2013) Region-specific relationships between refractive error and ciliary muscle thickness in children. Invest Ophthalmol Vis Sci 54:4710–4716

    Article  Google Scholar 

  24. Bailey MD, Sinnott LT, Mutti DO (2008) Ciliary body thickness and refractive error in children. Invest Ophthalmol Vis Sci 49:4353–4360

    Article  Google Scholar 

  25. Oliveira C, Tello C, Liebmann JM, Ritch R (2005) Ciliary body thickness increases with increasing axial myopia. Am J Ophthalmol 140:324–325

    Article  Google Scholar 

  26. Jonas JB, Ohno-Matsui K, Jiang WJ, Panda-Jonas S (2017) Bruch membrane and the mechanism of myopization. A new theory Retina 37:1428–1144

    Article  Google Scholar 

  27. Heine L (1899) Beiträge zur Anatomie des myopischen Auges. Arch Augenheilk 38:277–290

    Google Scholar 

  28. Vurgese S, Panda-Jonas S, Jonas JB (2012) Scleral thickness in human eyes. PLoS One 7:e29692

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jost B. Jonas.

Ethics declarations

Competing interests

Jost B. Jonas: Patent holder with Biocompatibles UK Ltd. (Franham, Surrey, UK) (Title: Treatment of eye diseases using encapsulated cells encoding and secreting neuroprotective factor and / or anti-angiogenic factor; Patent number: 20120263794), and Patent application with University of Heidelberg (Heidelberg, Germany) (Title: Agents for use in the therapeutic or prophylactic treatment of myopia or hyperopia; European Patent Number: 3070101). This does not alter our adherence to the journal’s policies on sharing data and materials. All other authors: None.

Ethical approval

According to the Declaration of Helsinki, the study was approved by the Medical Ethics Committee of the Beijing Tongren Hospital, waiving the necessity of a written informed consent by the patients since the eyes had been enucleated up to 50 years before the study was started.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Y., Bai, H.X., Li, B. et al. Dimensions of the ciliary muscles of Brücke, Müller and Iwanoff and their associations with axial length and glaucoma. Graefes Arch Clin Exp Ophthalmol 256, 2165–2171 (2018). https://doi.org/10.1007/s00417-018-4085-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-018-4085-7

Keywords

Navigation