The influence of hydration on different mechanical moduli of the cornea



To determine the interrelation of different elastic moduli of the cornea and to investigate their dependency on corneal hydration.


Rabbit eyes were divided into four groups. Corneas were excised and mounted into a Barron artificial anterior chamber. Various corneal hydration steady states were achieved with different dextran T-500 concentrations in the anterior chamber, as well as on the corneal anterior surface. The treatment-solutions of each group contained either 5, 10, 15, or 20% w/w dextran. Ultrasound pachymetry was used to measure central corneal thickness. Brillouin microscopy of the central cornea determined the longitudinal bulk modulus by means of Brillouin frequency shift. Subsequently, a 5-mm-wide central strip was taken for extensiometry to measure the tangential elastic modulus.


The longitudinal bulk modulus was 1.2-times higher in corneas dehydrated with 20% dextran compared to those hydrated with 5% dextran. In contrast, the tangential elastic modulus increased by 4.4 times. The obtained longitudinal bulk moduli were two orders of magnitude bigger than the tangential elastic moduli. Regression analysis of longitudinal bulk modulus and tangential elastic modulus revealed a quadratic relation. The bulk modulus seemed to be independent of tension, whereas the elastic modulus was tension-dependent. Greater corneal hydration led to significantly thicker pachymetry.


Corneal biomechanics are highly dependent on the level of corneal hydration. Surprisingly, tangential elastic moduli were more sensitive to hydration changes than longitudinal bulk moduli. A quadratic relation was found between both moduli.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Maurice DM (1984) The cornea and the sclera. In: Davson H (ed) The Eye, Vol 1b, 3rd edn. Academic Press, Orlando, pp 1–158

    Google Scholar 

  2. 2.

    Palko JR, Liu J (2016) Definitions and concepts. In: Roberts CJ, Liu J (eds) Corneal Biomechanics. Kugler Publications, Amsterdam, pp 1–24

    Google Scholar 

  3. 3.

    Hatami-Marbini H, Maulik R (2016) A biphasic transversely isotropic poroviscoelastic model for the unconfined compression of hydrated soft tissue. J Biomech Eng 138:4032059

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Thomsen L (1986) Weak elastic anisotropy. Geophysics 51:1954–1966

    Article  Google Scholar 

  5. 5.

    Dias J, Ziebarth NM (2015) Impact of hydration media on ex vivo corneal elasticity measurements. Eye Contact Lens 41:281–286

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Liu J, Roberts CJ (2005) Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. J Cataract Refract Surg 31:146–155

    Article  PubMed  Google Scholar 

  7. 7.

    Spoerl E, Huhle M, Seiler T (1998) Induction of cross-links in corneal tissue. Exp Eye Res 66:97–103

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Hoeltzel DA, Altman P, Buzard K, Choe K (1992) Strip extensiometry for comparison of the mechanical response of bovine, rabbit, and human corneas. J Biomech Eng 114:202–215

    Article  PubMed  CAS  Google Scholar 

  9. 9.

    Hammer A, Richoz O, Mosquera SA, Tabibian D, Hoogewoud F, Hafezi F (2014) Corneal biomechanical properties at different corneal cross-linking (CXL) irradiances. Invest Ophth Vis Sci 55:2881–2884

    Article  Google Scholar 

  10. 10.

    Seiler TG, Fischinger I, Senfft T, Schmidinger G, Seiler T (2014) Intrastromal application of riboflavin for corneal crosslinking. Invest Ophthalmol Vis Sci 55:4261–4265

    Article  PubMed  CAS  Google Scholar 

  11. 11.

    Hatami-Marbini H, Rahimi A (2015) Evaluation of hydration effects on tensile properties of bovine corneas. J Cataract Refract Surg 41:644–651

    Article  PubMed  Google Scholar 

  12. 12.

    Boyce BL, Jones RE, Nguyen TD, Grazier JM (2007) Stress-controlled viscoelastic tensile response of bovine cornea. J Biomech 40:2367–2376

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Elsheikh A, Alhasso D, Rama P (2008) Biomechanical properties of human and porcine corneas. Exp Eye Res 86:783–790

    Article  PubMed  CAS  Google Scholar 

  14. 14.

    Elsheikh A, Anderson K (2005) Comparative study of corneal strip extensometry and inflation tests. J R Soc Interface 2:177–185

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Gloster J, Perkins ES, Pommier ML (1957) Extensibility of strips of sclera and cornea. Br J Ophthalmol 41:103–110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. 16.

    Mikula ER, Jester JV, Juhasz T (2016) Measurement of an elasticity map in the human cornea. Invest Ophthalmol Vis Sci 57:3282–3286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. 17.

    Scarcelli G, Pineda R, Yun SH (2012) Brillouin optical microscopy for corneal biomechanics. Invest Ophthalmol Vis Sci 53:185–190

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Webb JN, Su JP, Scarcelli G (2017) Mechanical outcome of accelerated corneal crosslinking evaluated by Brillouin microscopy. J Cataract Refract Surg 43:1458–1463

    Article  PubMed  Google Scholar 

  19. 19.

    Dias JM, Ziebarth NM (2013) Anterior and posterior corneal stroma elasticity assessed using nanoindentation. Exp Eye Res 115:41–46

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Seifert J, Hammer CM, Rheinlaender J, Sel S, Scholz M, Paulsen F, Schäffer TE (2014) Distribution of Young's modulus in porcine corneas after riboflavin/UVA-induced collagen cross-linking as measured by atomic force microscopy. PLoS One 9:e88186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. 21.

    Jue B, Maurice DM (1986) The mechanical properties of the rabbit and human cornea. J Biomech 19:847–853

    Article  PubMed  CAS  Google Scholar 

  22. 22.

    Boyce BL, Grazier JM, Jones RE, Nguyen TD (2008) Full-field deformation of bovine cornea under constrained inflation conditions. Biomaterials 28:3896–3904

    Article  CAS  Google Scholar 

  23. 23.

    Kling S, Marcos S (2013) Effect of hydration state and storage media on corneal biomechanical response from in vitro inflation tests. J Refract Surg 29:490–497

    Article  PubMed  Google Scholar 

  24. 24.

    Hjortdal JO (1996) Regional elastic performance of the human cornea. J Biomech 29:931–942

    Article  PubMed  CAS  Google Scholar 

  25. 25.

    Scarcelli G, Kling S, Quijano E, Pineda R, Marcos S, Yun SH (2013) Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus. Invest Ophthalmol Vis Sci 54:1418–1425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. 26.

    Vaughan JM, Randall JT (1980) Brillouin scattering, density and elastic properties of the lens and cornea of the eye. Nature 284:489–491

    Article  PubMed  CAS  Google Scholar 

  27. 27.

    Soergel F, Jean B, Seiler T, Bende T, Mücke S, Pechhold W, Pels L (1995) Dynamic mechanical spectroscopy of the cornea for measurement of its viscoelastic properties in vitro. Ger J Ophthalmol 4:151–156

    PubMed  CAS  Google Scholar 

  28. 28.

    Petsche SJ, Chernyak D, Martiz J, Levenston ME, Pinsky PM (2012) Depth-dependent transverse shear properties of the human corneal stroma. Invest Ophthalmol Vis Sci 53:873–880

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Spiru B, Kling S, Hafezi F, Sekundo W (2017) Biomechanical differences between femtosecond Lenticule extraction (FLEx) and small incision Lenticule extraction (SmILE) tested by 2D-Extensometry in ex vivo porcine eyes. Invest Ophthalmol Vis Sci 58:2591–2595

    Article  PubMed  Google Scholar 

  30. 30.

    Scarcelli G, Yun SH (2016) Brillouin microscopy. In: Roberts CJ, Liu J (eds) Corneal Biomechanics. Kugler Publications, Amsterdam, pp 147–164

    Google Scholar 

  31. 31.

    Reiß S, Burau G, Stachs O, Guthoff R, Stolz H (2011) Spatially resolved Brillouin spectroscopy to determine the rheological properties of the eye lens. Biomed Opt Express 2:2144–2159

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Hedbys BO, Mishima S (1966) The thickness-hydration relationship of the cornea. Exp Eye Res 5:221–228

    Article  PubMed  CAS  Google Scholar 

  33. 33.

    Hatami-Marbini H, Etebu E (2013) Hydration dependent biomechanical properties of the corneal stroma. Exp Eye Res 116:47–54

    Article  PubMed  CAS  Google Scholar 

  34. 34.

    Palko JR, Tang J, Cruz Perez B, Pan X, Liu J (2014) Spatially heterogeneous corneal mechanical responses before and after riboflavin-ultraviolet-a crosslinking. J Cataract Refract Surg 40:1021–1031

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Müller LJ, Pels E, Schurmans LR, Vrensen GF (2004) A new three-dimensional model of the organization of proteoglycans and collagen fibrils in the human corneal stroma. Exp Eye Res 78:493–501

    Article  PubMed  CAS  Google Scholar 

  36. 36.

    Nguyen TD, Jones RE, Boyce BL (2008) A nonlinear anisotropic viscoelastic model for the tensile behavior of the corneal stroma. J Biomech Eng 130:041020

    Article  PubMed  CAS  Google Scholar 

  37. 37.

    Fratzl P, Daxer A (1993) Structural transformation of collagen fibrils in corneal stroma during drying. An x-ray scattering study. Biophys J 64:1210–1214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. 38.

    Meek KM, Fullwood NJ, Cooke PH, Elliott GF, Maurice DM, Quantock AJ, Wall RS, Worthington CR (1991) Synchrotron x-ray diffraction studies of the cornea, with implications for stromal hydration. Biophys J 60:467–474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. 39.

    Ko MW, Leung LK, Lam DC, Leung CK (2013) Characterization of corneal tangent modulus in vivo. Acta Ophthalmol 91:e263–e269

    Article  PubMed  Google Scholar 

  40. 40.

    Singh M, Li J, Han Z, Wu C, Aglyamov SR, Twa MD, Larin KV (2016) Investigating elastic anisotropy of the porcine cornea as a function of intraocular pressure with optical coherence Elastography. J Refract Surg 32:562–567

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Sperlich K, Reiß S, Bohn S, Stolz H, Guthoff RF, Jünemann A, Stachs O (2017) Effect of the age-related corneal elasticity on applanation tonometry. Klin Monatsbl Augenheilkd 234:1472–1476

    Article  PubMed  Google Scholar 

  42. 42.

    Kohlhaas M, Spoerl E, Schilde T, Unger G, Wittig C, Pillunat LE (2006) Biomechanical evidence of the distribution of cross-links in corneas treated with riboflavin and ultraviolet a light. J Cataract Refract Surg 32:279–283

    Article  PubMed  Google Scholar 

  43. 43.

    Elsheikh A, Brown M, Alhasso D, Rama P, Campanelli M, Garway-Heath D (2008) Experimental assessment of corneal anisotropy. J Refract Surg 24:178–187

    PubMed  Google Scholar 

Download references


The authors thank Irene E. Kochevar, PhD; Marleen Engler, BSc; and Eric Beck, BSc for their support.


T. G. Seiler was supported by an unrestricted grant from the Swiss National Science Foundation. The sponsor had no role in the design or conduct of this research.

Author information



Corresponding author

Correspondence to Theo G. Seiler.

Ethics declarations

Conflict of interest

S.H. Yun is a co-founder of Intelon Inc., Boston, MA. T. Seiler and P. Shao are scientific consultants of Intelon Inc. T.G. Seiler and B.E. Frueh certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Appendix A: Brillouin frequency shift and elastic module

Appendix A: Brillouin frequency shift and elastic module

Bulk Brillouin scattering can be used to probe elastic properties of transparent materials because incident light is inelastically scattered by acoustic wavelets (phonons) whose velocity is related with the elasticity of the material. Photons of the incident light may take energy from the phonons leading to wavelength shift (Stokes shift) of the scattered light or may deliver energy to the phonons (anti-Stokes shift). Due to the experimental setup, measuring backscattered light perpendicular to the corneal surface, only longitudinal waves can be measured and in this case the Brillouin frequency shift Ω can be expressed by

$$ \Omega =\kern0.5em \frac{2n}{\uplambda}\kern0.50em v $$

where n = refractive index of the medium, λ = wavelength, v = velocity of the acoustic wave [31]. Longitudinal ultrasound velocity v in isotropic media, on the other hand, is related with the bulk modulus M

$$ M=\uprho \kern0.24em {v}^2 $$

where ρ = density of the medium. This bulk modulus M may not be confused with Young’s elastic modulus E that describes the elastic properties in the surface-parallel plane. Combining Eqs. 1 and 2, it is obvious that M ∝ Ω2, in detail

$$ M=\uprho \kern0.5em \frac{\uplambda^2\kern.3em {\Omega}^2\kern.3em }{4\kern.3em {n}^2} $$

For a physiologically hydrated cornea (equivalent to 13% dextran) the frequency shift Ω was 5.564 GHz. A density of ρ = 1061 kg/m3, a laser wavelength of λ = 780 nm, and a refractive index of the corneal stroma n = 1.3672 yields for M a value of 2.673 GPa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seiler, T.G., Shao, P., Frueh, B.E. et al. The influence of hydration on different mechanical moduli of the cornea. Graefes Arch Clin Exp Ophthalmol 256, 1653–1660 (2018).

Download citation


  • Cornea
  • Biomechanics
  • Hydration
  • Brillouin
  • Stress strain
  • Extensiometry
  • Tangential elastic modulus
  • Longitudinal elastic modulus