Advertisement

Peripapillary comet lesions and comet rain in PXE-related retinopathy

  • Vittoria Murro
  • Dario Pasquale Mucciolo
  • Andrea Sodi
  • Federica Boraldi
  • Daniela Quaglino
  • Gianni Virgili
  • Stanislao Rizzo
Retinal Disorders
  • 74 Downloads

Abstract

Purpose

To study peripapillary comet lesions (PCL) in Italian patients affected with pseudoxanthoma elasticum (PXE).

Methods

Retrospective review of fundoscopic and swept-source (SS) optical coherence tomography (OCT) images of patients with PXE examined at the Regional Reference Center for Hereditary Retinal Degenerations at the Careggi Teaching Hospital of Florence from 2012 to 2017.

Results

From 148 eyes of 74 patients affected with PXE, we identified 24 eyes of 14 patients (11 were female) with a mean age of 39 years (range, 20–58 years) characterized by peripapillary comet lesions. Of these 24 eyes, 15 eyes (of 10 patients) were characterized by comet rain. The smallest comet lesion at the OCT examination appeared as a focal roundish hyper-reflective alteration at the level of the outer retinal segments and RPE-Bruch’s membrane complex; the larger lesions appeared as circular and ovoid structures with hyper-reflective borders in the outer nuclear layer.

Conclusion

The comet lesion formation process involves the outer layers of the retina and RPE/Bruch’s membrane complex. It consists of a degenerative/rearrangement process of the photoreceptors which occurs in an area of focal altered RPE/Bruch’s membrane resembling the outer retinal tubulation.

Keywords

PXE Comet lesion Comet rain Peripapillary comet lesion OCT ORT Outer retinal tubulation 

Notes

Acknowledgements

Authors gratefully acknowledge the collaborative support of PXE Italia Onlus and the technical contribution of Sonia Costa.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (name of institute/committee) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

For this type of study, formal consent is not required.

References

  1. 1.
    Chassaing N, Martin L, Calvas P et al (2005) Pseudoxanthoma elasticum: a clinical, pathophysiological and genetic update including 11 novel ABCC6 mutations. J Med Genet 42(12):881–892 ReviewCrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bergen AA, Plomp AS, Schuurman EJ et al (2000) Mutations in ABCC6 cause pseudoxanthoma elasticum. Nat Genet 25(2):228–231CrossRefPubMedGoogle Scholar
  3. 3.
    Le Saux O, Urban Z, Tschuch C et al (2000) Mutations in a gene encoding an ABC transporter cause pseudoxanthoma elasticum. Nat Genet 25(2):223–227CrossRefPubMedGoogle Scholar
  4. 4.
    Finger RP, Charbel Issa P, Ladewig M et al (2009) Fundus autofluorescence in pseudoxanthoma elasticum. Retina 29(10):1496–1505CrossRefPubMedGoogle Scholar
  5. 5.
    Gass JD (2003) “Comet” lesion: an ocular sign of pseudoxanthoma elasticum. Retina 23(5):729–730CrossRefPubMedGoogle Scholar
  6. 6.
    Hu X, Plomp AS, van Soest S et al (2003) Pseudoxanthoma elasticum: a clinical, histopathological, and molecular update. Surv Ophthalmol 48(4):424–438 Review CrossRefPubMedGoogle Scholar
  7. 7.
    Gliem M, Zaeytijd JD, Finger RP et al (2013) An update on the ocular phenotype in patients with pseudoxanthoma elasticum. Front Genet 4:14CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    De Zaeytijd J, Vanakker OM, Coucke PJ et al (2010) Added value of infrared, red-free and autofluorescence fundus imaging in pseudoxanthoma elasticum. Br J Ophthalmol 94(4):479–486CrossRefPubMedGoogle Scholar
  9. 9.
    Barteselli G, Viola F (2015) Comet lesions in pseudoxanthoma elasticum: a spectral domain optical coherence tomography analysis. Retina 35(5):1051–1053CrossRefPubMedGoogle Scholar
  10. 10.
    Charbel Issa P, Finger RP, Götting C et al (2010) Centrifugal fundus abnormalities in pseudoxanthoma elasticum. Ophthalmology 117(7):1406–1414CrossRefPubMedGoogle Scholar
  11. 11.
    Charbel Issa P, Finger RP, Holz FG, Scholl HP (2009) Multimodal imaging including spectral domain OCT and confocal near infrared reflectance for characterization of outer retinal pathology in pseudoxanthoma elasticum. Invest Ophthalmol Vis Sci 50(12):5913–5918CrossRefPubMedGoogle Scholar
  12. 12.
    Curcio CA, Medeiros NE, Millican CL (1996) Photoreceptor loss in age-related macular degeneration. Invest Ophthalmol Vis Sci 37(7):1236–1249PubMedGoogle Scholar
  13. 13.
    Zweifel SA, Engelbert M, Laud K et al (2009) Outer retinal tubulation: a novel optical coherence tomography finding. Arch Ophthalmol 127(12):1596–1602CrossRefPubMedGoogle Scholar
  14. 14.
    Litts KM, Messinger JD, Dellatorre K et al (2015) Clinicopathological correlation of outer retinal tubulation in age-related macular degeneration. JAMA Ophthalmol 133(5):609–612CrossRefPubMedGoogle Scholar
  15. 15.
    Litts KM, Ach T, Hammack KM et al (2016) Quantitative analysis of outer retinal tubulation in age-related macular degeneration from spectral-domain optical coherence tomography and histology. Invest Ophthalmol Vis Sci 1;57(6):2647–56Google Scholar
  16. 16.
    Dolz-Marco R, Litts KM, Tan ACS et al (2017) The evolution of outer retinal tubulation, a neurodegeneration and gliosis prominent in macular diseases. Ophthalmology 124(9):1353–1367CrossRefPubMedGoogle Scholar
  17. 17.
    Wolff B, Matet A, Vasseur V et al (2012) En face OCT imaging for the diagnosis of outer retinal tubulations in age-related macular degeneration J Ophthalmol 542417Google Scholar
  18. 18.
    Preti RC, Govetto A, Filho RGA et al (2017) Optical coherence tomography analysis of outer retinal tubulations: sequential evolution and pathophysiological insights. Retina.  https://doi.org/10.1097/IAE.0000000000001810
  19. 19.
    Schaal KB, Freund KB, Litts KM et al (2015) Outer retinal tubulation in advanced age-related macular degeneration: optical coherence tomographic findings correspond to histology. Retina 35(7):1339–1350CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Iriyama A, Aihara Y, Yanagi Y (2013) Outer retinal tubulation in inherited retinal degenerative disease. Retina 33(7):1462–1465CrossRefPubMedGoogle Scholar
  21. 21.
    Goldberg NR, Greenberg JP, Laud K et al (2013) Outer retinal tubulation in degenerative retinal disorders. Retina 33(9):1871–1876CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Fujinami K, Sergouniotis PI, Davidson AE et al (2013) Clinical and molecular analysis of Stargardt disease with preserved foveal structure and function. Am J Ophthalmol 156(3):487–501.e1CrossRefPubMedGoogle Scholar
  23. 23.
    Ellabban AA, Hangai M, Yamashiro K et al (2012) Tomographic fundus features in pseudoxanthoma elasticum: comparison with neovascular age-related macular degeneration in Japanese patients. Eye (Lond) 26(8):1086–1094CrossRefGoogle Scholar
  24. 24.
    Braimah IZ, Dumpala S, Chhablani J (2017) Outer retinal tubulation in retinal dystrophies. Retina 37(3):578–584CrossRefPubMedGoogle Scholar
  25. 25.
    Dolz-Marco R, Gallego-Pinazo R, Pinazo-Durán MD et al (2013) Outer retinal tubulation analysis in cases of macular dystrophy. Arch Soc Esp Oftalmol 88(4):161–162CrossRefPubMedGoogle Scholar
  26. 26.
    Sergouniotis PI, Davidson AE, Lenassi E et al (2012) Retinal structure, function, and molecular pathologic features in gyrate atrophy. Ophthalmology 119(3):596–605CrossRefPubMedGoogle Scholar
  27. 27.
    Xue K, Oldani M, Jolly JK et al (2016) Correlation of optical coherence tomography and autofluorescence in the outer retina and choroid of patients with choroideremia. Invest Ophthalmol Vis Sci 1;57(8):3674–84Google Scholar
  28. 28.
    Zweifel SA, Imamura Y, Freund KB, Spaide RF (2011) Multimodal fundus imaging of pseudoxanthoma elasticum. Retina 31(3):482–491CrossRefPubMedGoogle Scholar
  29. 29.
    Spaide RF, Jonas JB (2015) Peripapillary atrophy with large dehiscences in Bruch membrane in pseudoxanthoma elasticum. Retina 35(8):1507–1510CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Surgery and Translational Medicine, Eye ClinicUniversity of FlorenceFlorenceItaly
  2. 2.Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly

Personalised recommendations