NGF protects corneal, retinal, and cutaneous tissues/cells from phototoxic effect of UV exposure

  • Maria Luisa Rocco
  • Bijorn Omar Balzamino
  • Luigi Aloe
  • Alessandra Micera
Basic Science

Abstract

Purpose

Based on evidence that nerve growth factor (NGF) exerts healing action on damaged corneal, retinal, and cutaneous tissues, the present study sought to assess whether topical NGF application can prevent and/or protect epithelial cells from deleterious effects of ultraviolet (UV) radiation.

Methods

Eyes from 40 young-adult Sprague Dawley rats and cutaneous tissues from 36 adult nude mice were exposed to UVA/B lamp for 60 min, either alone or in the presence of murine NGF. Corneal, retinal, and cutaneous tissues were sampled/processed for morphological, immunohistochemical, and biomolecular analysis, and results were compared statistically.

Results

UV exposure affected both biochemical and molecular expression of NGF and trkANGFR in corneal, retinal, and cutaneous tissues while UV exposure coupled to NGF treatment enhanced NGF and trkANGFR expression as well as reduced cell death.

Conclusions

Overall, the findings of this in vivo/ex vivo study show the NGF ability to reduce the potential UV damage. Although the mechanism underneath this effect needs further investigation, these observations prospect the development of a pharmacological NGF-based therapy devoted to maintain cell function when exposed to phototoxic UV radiation.

Keywords

UV radiation NGF trkANGFR Protection Phototoxicity 

Notes

Acknowledgments

BOB and AM were supported by the Italian Ministry of Health and Fondazione Roma (Rome, Italy). LA and MLR were granted by Associazione NGF-Onlus (Rome, Italy) and Fondazione IRET (Ozzano Emilia, Bologna, Italy).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Animals were housed at the National Research Council (CNR) animal facility and handled according to the experimental procedure approved by the Ethical Commission on animal experimentation of CNR. Animal care experimental procedures were performed in compliance with the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research, in accordance with National and International laws and policies.

References

  1. 1.
    Hassan NM, Painter N, Howlett CR, Farrell AW, Di Girolamo N, Lyons JG, Halliday GM (2014) Brm inhibits the proliferative response of keratinocytes and corneal epithelial cells to ultraviolet radiation-induced damage. PLoS One 25(9):e107931CrossRefGoogle Scholar
  2. 2.
    Berg RJ, de Gruijl FR, van der Leun JC (1993) Interaction between ultraviolet A and ultraviolet B radiations in skin cancer induction in hairless mice. Cancer Res 15(18):4212–4217Google Scholar
  3. 3.
    de Gruijl FR (1999) Skin cancer and solar UV radiation. Eur J Cancer 35(14):2003–2009CrossRefPubMedGoogle Scholar
  4. 4.
    Brash DE, Rudolph JA, Simon JA, Lin A, McKenna GJ, Baden HP et al (1991) A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci U S A 15(22):10124–10128CrossRefGoogle Scholar
  5. 5.
    de Oliveira Miguel NC, Meyer-Rochow VB, Allodi S (2003) A structural study of the retinal photoreceptor, plexiform and ganglion cell layers following exposure to UV-B and UV-C radiation in the albino rat. Micron 34(8):395–404CrossRefPubMedGoogle Scholar
  6. 6.
    Kraljević Pavelić S, Klobučar M, Sedić M, Micek V, Gehrig P et al (2015) UV-induced retinal proteome changes in the rat model of age-related macular degeneration. Biochim Biophys Acta 1852(9):1833–1845CrossRefPubMedGoogle Scholar
  7. 7.
    Lee YH, Wang E, Kumar N, Glickman RD (2014) Ursolic acid differentially modulates apoptosis in skin melanoma and retinal pigment epithelial cells exposed to UV-VIS broadband radiation. Apoptosis 19(5):816–828CrossRefPubMedGoogle Scholar
  8. 8.
    Schein OD (1992) Phototoxicity and the cornea. J Natl Med Assoc 84(7):579–583PubMedPubMedCentralGoogle Scholar
  9. 9.
    Zuclich JA, Connolly JS (1976) Ocular damage induced by near-ultraviolet laser radiation. Invest Ophthalmol Vis Sci 15(9):760–764PubMedGoogle Scholar
  10. 10.
    van Weelden H, van der Putte SC, Toonstra J, van der Leun JC (1990) UVA-induced tumours in pigmented hairless mice and the carcinogenic risks of tanning with UVA. Arch Dermatol Res 282(5):289–294CrossRefPubMedGoogle Scholar
  11. 11.
    Zhai S, Yaar M, Doyle SM, Gilchrest BA (1996) Nerve growth factor rescues pigment cells from ultraviolet-induced apoptosis by upregulating BCL-2 levels. Exp Cell Res 224(2):335–343CrossRefPubMedGoogle Scholar
  12. 12.
    Beani JC (2014) Ultraviolet A-induced DNA damage: role in skin cancer. Bull Acad Natl Med 198(2):273–295PubMedGoogle Scholar
  13. 13.
    Steinbauer J, Schreml S, Karrer S, Ackermann G, Babilas P, Landthaler M, Szeimies RM (2009) Phototoxic reactions in healthy volunteers following photodynamic therapy with methylaminolevulinate cream or with cream containing 5-aminolevulinic acid: a phase II, randomized study. Photodermatol Photoimmunol Photomed 25(5):270–275CrossRefPubMedGoogle Scholar
  14. 14.
    Levi-Montalcini R (1987) The nerve growth factor 35 years later. Science 237(4819):1154–1162CrossRefPubMedGoogle Scholar
  15. 15.
    Aloe L, Calzà L (2004) NGF and related molecules in health and disease, progress in brain research, vol 146. 1st edn. Elsevier Science, LondonGoogle Scholar
  16. 16.
    Connor B, Dragunow M (1998) The role of neuronal growth factors in neurodegenerativedisorders of the human brain. Brain Res Brain Res Rev 27(1):1–39 ReviewCrossRefPubMedGoogle Scholar
  17. 17.
    Tuszynski MH, Thal L, Pay M, Salmon DP, U HS, Bakay R et al (2005) A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 11(5):551–555CrossRefPubMedGoogle Scholar
  18. 18.
    Eriksdotter Jönhagen M, Nordberg A, Amberla K, Bäckman L, Ebendal T, Meyerson B et al (1998) Intracerebroventricular infusion of nerve growth factor in three patients with Alzheimer's disease. Dement Geriatr Cogn Disord 9(5):246–257CrossRefPubMedGoogle Scholar
  19. 19.
    Matsuda H, Koyama H, Sato H, Sawada J, Itakura A, Tanaka A et al (1998) Role of nerve growth factor in cutaneous wound healing: accelerating effects in normal and healing-impaired diabetic mice. J Exp Med 187(3):297–306CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Micera A, Puxeddu I, Aloe L, Levi-Schaffer F (2003) New insights on the involvement of nerve growth factor in allergic inflammation and fibrosis. Cytokine Growth Factor Rev 14(5):369–374CrossRefPubMedGoogle Scholar
  21. 21.
    Micera A, Puxeddu I, Balzamino BO, Bonini S, Levi-Schaffer F (2012) Chronic nerve growth factor exposure increases apoptosis in a model of in vitro induced conjunctival myofibroblasts. PLoS One 7(10):e47316CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Siliprandi R, Canella R, Carmignoto G (1993) Nerve growth factor promotes functional recovery of retinal ganglion cells after ischemia. Invest Ophthalmol Vis Sci 34(12):3232–3245PubMedGoogle Scholar
  23. 23.
    Maffei L, Carmignoto G, Perry VH, Candeo P, Ferrari G (1990) Schwann cells promote the survival of rat retinal ganglion cells after optic nerve section. Proc Natl Acad Sci U S A 87(5):1855–1859CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Generini S, Tuveri MA, Matucci Cerinic M, Mastinu F, Manni L, Aloe L (2004) Topical application of nerve growth factor in human diabetic foot ulcers. A study of three cases. Exp Clin Endocrinol Diabetes 112(9):542–544CrossRefPubMedGoogle Scholar
  25. 25.
    Landi F, Aloe L, Russo A, Cesari M, Onder G, Bonini S et al (2003) Topical treatment of pressure ulcers with nerve growth factor: a randomized clinical trial. Ann Intern Med 139(8):635–641CrossRefPubMedGoogle Scholar
  26. 26.
    Lambiase A, Aloe L, Centofanti M, Parisi V, Báo SN, Mantelli F et al (2009) Experimental and clinical evidence of neuroprotection by nerve growth factor eye drops: implications for glaucoma. Proc Natl Acad Sci U S A 106(32):13469–13474CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Rocco ML, Balzamino BO, Petrocchi Passeri P, Micera A, Aloe L (2015) Effect of purified murine NGF on isolated photoreceptors of a rodent developing retinitis pigmentosa. PLoS One 10(4):e0124810CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Artigas JM, Felipe A, Navea A, Artigas C, Menezo JL (2013) Ultraviolet radiation at Mediterranean latitudes and protection efficacy of intraocular lenses. Ultraviolet radiation at Mediterranean latitudes and protection efficacy of intraocular lenses. J Fr Ophtalmol 36(1):23–28CrossRefPubMedGoogle Scholar
  29. 29.
    Delic NC, Lyons JG, Di Girolamo N, Halliday GM (2017) Damaging effects of ultraviolet radiation on the cornea. Photochem Photobiol 93(4):920–929CrossRefPubMedGoogle Scholar
  30. 30.
    Bocchini V, Angeletti PU (1969) The nerve growth factor: purification as a 30,000-molecular-weight protein. Proc Natl Acad Sci U S A 64(2):787–794CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Stoeckel K, Gagnon C, Guroff G, Thoenen H (1976) Purification of nerve growth factor antibodies by affinity chromatography. J Neurochem 26:1207–1211CrossRefPubMedGoogle Scholar
  32. 32.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Rafiq RA, Quadri A, Nazir LA, Peerzada K, Ganai BA, Tasduq SA (2015) A potent inhibitor of phosphoinositide 3-kinase (PI3K) and mitogen activated protein (MAP) kinase Signalling, quercetin (3, 3′, 4′, 5, 7-Pentahydroxyflavone) promotes cell death in ultraviolet (UV)-B-irradiated B16F10 melanoma cells. PLoS One 10(7):e0131253CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Pustisek N, Situm M (2011) UV-radiation, apoptosis and skin. Coll Antropol 35(Suppl 2):339–341PubMedGoogle Scholar
  35. 35.
    Siminoski K, Gonnella P, Bernanke J, Owen L, Neutra M, Murphy RA (1986) Uptake and transepithelial transport of nerve growth factor in suckling rat ileum. J Cell Biol 103(5):1979–1990CrossRefPubMedGoogle Scholar
  36. 36.
    Micera A, Lambiase A, Puxeddu I, Aloe L, Stampachiacchiere B, Levi-Schaffer F et al (2006) Nerve growth factor effect on human primary fibroblastic-keratocytes: possible mechanism during corneal healing. Exp Eye Res 83(4):747–757CrossRefPubMedGoogle Scholar
  37. 37.
    Lazaridis I, Charalampopoulos I, Alexaki VI, Avlonitis N, Pediaditakis I, Efstathopoulos P et al (2011) Neurosteroid dehydroepiandrosterone interacts with nerve growth factor (NGF) receptors, preventing neuronal apoptosis. PLoSBiol 9(4):e1001051CrossRefGoogle Scholar
  38. 38.
    Engelberg D, Klein C, Martinetto H, Struhl K, Karin M (1994) The UV response involving the Ras signaling pathway and AP-1 transcription factors is conserved between yeast and mammals. Cell 77(3):381–390CrossRefPubMedGoogle Scholar
  39. 39.
    Ruvolo PP, Deng X, May WS (2001) Phosphorylation of Bcl2 and regulation of apoptosis. Leukemia 15(4):515–522CrossRefPubMedGoogle Scholar
  40. 40.
    Micera A, Lambiase A, Stampachiacchiere B, Bonini S, Bonini S, Levi-Schaffer F (2007) Nerve growth factor and tissue repair remodeling: trkA(NGFR) and p75(NTR), two receptors one fate. Cytokine Growth Factor Rev 18(3–4):245–256CrossRefPubMedGoogle Scholar
  41. 41.
    Lambiase A, Centofanti M, Micera A, Manni GL, Mattei E, De Gregorio A et al (1997) Nerve growth factor (NGF) reduces and NGF antibody exacerbates retinal damage induced in rabbit by experimental ocular hypertension. Graefes Arch Clin Exp Ophthalmol 235(12):780–785CrossRefPubMedGoogle Scholar
  42. 42.
    Anderson CW (1993) DNA damage and the DNA-activated protein kinase. Trends Biochem Sci 18(11):433–437CrossRefPubMedGoogle Scholar
  43. 43.
    Hong X, Liu W, Song R, Shah JJ, Feng X, Tsang CK et al (2016) SOX9 is targeted for proteasomal degradation by the E3 ligase FBW7 in response to DNA damage. Nucleic Acids Res 44(18):8855–8869CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kimura A, Namekata K, Guo X, Harada C, Harada T (2016) Neuroprotection, growth factors and BDNF-TrkB signalling in retinal degeneration. Int J Mol Sci 17(9).  https://doi.org/10.3390/ijms17091584
  45. 45.
    de Melo Reis RA, Cabral-da-Silva M, de Mello FG, Taylor JS (2008) Müller glia factors induce survival and neuritogenesis of peripheral and central neurons. Brain Res 1205:1–11CrossRefPubMedGoogle Scholar
  46. 46.
    Chen JC, Lin BB, Hu HW, Lin C, Jin WY, Zhang FB, Zhu YA, Lu CJ, Wei XJ, Chen RJ (2014) NGF accelerates cutaneous wound healing by promoting the migration of dermal fibroblasts via the PI3K/Akt-Rac1-JNK and ERK pathways. Biomed Res Int 2014:547187PubMedPubMedCentralGoogle Scholar
  47. 47.
    Shirley SH, Rundhaug JE, Perez CJ, Coletta LD, Kusewitt DF (2017) Slug modulates UV radiation-induced cutaneous inflammation by regulating epidermal production of Proinflammatory cytokines. J Invest Dermatol 137(2):532–534CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Cell Biology and Neurobiology, CNRRomeItaly
  2. 2.Fondazione IRET, Ozzano EmiliaBolognaItaly
  3. 3.IRCCS-G.B. Bietti FoundationRomeItaly
  4. 4.Associazione NGF ONLUSRomeItaly

Personalised recommendations