Advertisement

Gene expression in retinal ischemic post-conditioning

  • Konrad Kadzielawa
  • Biji Mathew
  • Clara R. Stelman
  • Arden Zhengdeng Lei
  • Leianne Torres
  • Steven RothEmail author
Basic Science

Abstract

Purpose

The pathophysiology of retinal ischemia involves mechanisms including inflammation and apoptosis. Ischemic post-conditioning (Post-C), a brief non-lethal ischemia, induces a long-term ischemic tolerance, but the mechanisms of ischemic post-conditioning in the retina have only been described on a limited basis. Accordingly, we conducted this study to determine the molecular events in retinal ischemic post-conditioning and to identify targets for therapeutic strategies for retinal ischemia.

Methods

To determine global molecular events in ischemic post-conditioning, a comprehensive study of the transcriptome of whole retina was performed. We utilized RNA sequencing (RNA-Seq), a recently developed, deep sequencing technique enabling quantitative gene expression, with low background noise, dynamic detection range, and discovery of novel genes. Rat retina was subjected to ischemia in vivo by elevation of intraocular pressure above systolic blood pressure. At 24 h after ischemia, Post-C or sham Post-C was performed by another, briefer period of ischemia, and 24 h later, retinas were collected and RNA processed.

Results

There were 71 significantly affected pathways in post-conditioned/ischemic vs. normals and 43 in sham post conditioned/ischemic vs. normals. Of these, 28 were unique to Post-C and ischemia. Seven biological pathways relevant to ischemic injury, in Post-C as opposed to sham Post-C, were examined in detail. Apoptosis, p53, cell cycle, JAK-STAT, HIF-1, MAPK and PI3K-Akt pathways significantly differed in the number as well as degree of fold change in genes between conditions.

Conclusion

Post-C is a complex molecular signaling process with a multitude of altered molecular pathways. We identified potential gene candidates in Post-C. Studying the impact of altering expression of these factors may yield insight into new methods for treating or preventing damage from retinal ischemic disorders.

Keywords

Ischemia Post-conditioning Retina RNA-Seq 

Notes

Funding

This study was supported by the National Institutes of Health (Rockville, MD, USA) grant EY10343 to Dr. Roth, UL1TR000050 to the Center for Clinical and Translational Sciences of the University of Illinois at Chicago, the Illinois Society for the Prevention of Blindness, Chicago, IL, USA (Ms. Stelman); the Craig Foundation (Chicago, IL, USA, Ms. Stelman), a medical student research fellowship grant from the Foundation for Anesthesia Education and Research (Schaumburg, IL, USA, Ms. Stelman), and Core Grant P30 EY001792 (to the Department of Ophthalmology, University of Illinois at Chicago from the National Institutes of Health, Rockville, MD, USA); There was no involvement of the funding bodies in the design of the study or in collection, analysis and interpretation of the data or the writing of the manuscript. None of the authors have any conflicts of interest.

Compliance with ethical standards

Animal experiments

Ethical approval: All procedures performed in studies involving animals were in accordance with the ethical standards of and approved by the Institutional Animal Care and Use Committee of the University of Illinois at Chicago.

Supplementary material

417_2018_3905_MOESM1_ESM.pptx (4.6 mb)
ESM 1 (PPTX 4685 kb)

References

  1. 1.
    Zheng L, Gong B, Hatala DA, Kern TS (2007) Retinal ischemia and reperfusion causes capillary degeneration: similarities to diabetes. Invest Ophthalmol Vis Sci 48:361–367CrossRefPubMedGoogle Scholar
  2. 2.
    Dreixler JC, Poston JN, Shaikh AR, Alexander M, Tupper KY, Marcet MM, Bernaudin M, Roth S (2011) Delayed post-ischemic conditioning significantly improves the outcome after retinal ischemia. Exp Eye Res 92:521–527.  https://doi.org/10.1016/j.exer.2011.03.015 CrossRefPubMedGoogle Scholar
  3. 3.
    Fernandez DC, Bordone MP, Chianelli MS, Rosenstein RE (2009) Retinal neuroprotection against ischemia-reperfusion damage induced by postconditioning. Invest Ophthalmol Vis Sci 50:3922–3930CrossRefPubMedGoogle Scholar
  4. 4.
    Osborne NN, Ugarte M, Chao M, Chidlow G, Bae JH, Wood JP, Nash MS (1999) Neuroprotection in relation to retinal ischemia and relevance to glaucoma. Surv Ophthalmol 43(Suppl 1):S102–S128CrossRefPubMedGoogle Scholar
  5. 5.
    Limalanathan S, Andersen GO, Hoffmann P, Klow N-E, Abdelnoor M, Eritsland J (2010) Rationale and design of the POSTEMI (postconditioning in ST-elevation myocardial infarction) study. Cardiology 116:103–109CrossRefPubMedGoogle Scholar
  6. 6.
    Zhao H (2009) Ischemic postconditioning as a novel avenue to protect against brain injury after stroke. J Cereb Blood Flow Metab 29:873–885CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dreixler JC, Sampat A, Shaikh AR, Alexander M, Marcet MM, Roth S (2011) Protein kinase B (Akt) and mitogen-activated protein kinase p38alpha in retinal ischemic post-conditioning. J Mol Neurosci 45:309–320.  https://doi.org/10.1007/s12031-011-9523-5 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yasuda M, Tanaka Y, Omodaka K, Nishiguchi KM, Nakamura O, Tsuda S, Nakazawa T (2016) Transcriptome profiling of the rat retina after optic nerve transection. Sci Rep 6:28736.  https://doi.org/10.1038/srep28736 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63.  https://doi.org/10.1038/nrg2484 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Brown J, Pirrung M, McCue LA (2017) FQC dashboard: integrates FastQC results into a web based interactive and extensible FastQ quality control tool. Bioinformatics.  https://doi.org/10.1093/bioinformatics/btx373
  11. 11.
    Li H, Durbin R (2010) Fast and accurate long-read alignment with burrows-wheeler transform. Bioinformatics 26:589–595.  https://doi.org/10.1093/bioinformatics/btp698 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930.  https://doi.org/10.1093/bioinformatics/btt656 CrossRefPubMedGoogle Scholar
  13. 13.
    Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140.  https://doi.org/10.1093/bioinformatics/btp616 CrossRefPubMedGoogle Scholar
  14. 14.
    Anders S, McCarthy DJ, Chen Y, Okoniewski M, Smyth GK, Huber W, Robinson MD (2013) Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nat Protoc 8:1765–1786.  https://doi.org/10.1038/nprot.2013.099 CrossRefPubMedGoogle Scholar
  15. 15.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B (Methodological) 57:289–300Google Scholar
  16. 16.
    Pathan M, Keerthikumar S, Ang CS, Gangoda L, Quek CY, Williamson NA, Mouradov D, Sieber OM, Simpson RJ, Salim A, Bacic A, Hill AF, Stroud DA, Ryan MT, Agbinya JI, Mariadason JM, Burgess AW, Mathivanan S (2015) FunRich: an open access standalone functional enrichment and interaction network analysis tool. Proteomics 15:2597–2601.  https://doi.org/10.1002/pmic.201400515 CrossRefPubMedGoogle Scholar
  17. 17.
    Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25:25–29.  https://doi.org/10.1038/75556 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Collaborators (2015) Gene ontology consortium: going forward. Nucleic Acids Res 43:D1049–D1056.  https://doi.org/10.1093/nar/gku1179 CrossRefGoogle Scholar
  19. 19.
    Ahsan S, Draghici S (2017) Identifying significantly impacted pathways and putative mechanisms with iPathwayGuide. Curr Protoc Bioinformatics 57:7.15.1–7.15.30.  https://doi.org/10.1002/cpbi.24 CrossRefGoogle Scholar
  20. 20.
    Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, Georgescu C, Romero R (2007) A systems biology approach for pathway level analysis. Genome Res 17:1537–1545.  https://doi.org/10.1101/gr.6202607 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Huang HC, Niu Y, Qin LX (2015) Differential expression analysis for RNA-Seq: an overview of statistical methods and computational software. Cancer Informat 14(Suppl 1):57–67.  https://doi.org/10.4137/CIN.S21631 Google Scholar
  23. 23.
    Hussein SMI, Puri MC, Tonge PD, Benevento M, Corso AJ, Clancy JL, Mosbergen R, Li M, Lee D-S, Cloonan N, Wood DLA, Munoz J, Middleton R, Korn O, Patel HR, White CA, Shin J-Y, Gauthier ME, Cao K-AL, Kim J-I, Mar JC, Shakiba N, Ritchie W, Rasko JEJ, Grimmond SM, Zandstra PW, Wells CA, Preiss T, Seo J-S, Heck AJR, Rogers IM, Nagy A (2014) Genome-wide characterization of the routes to pluripotency. Nature 516:198–206.  https://doi.org/10.1038/nature14046 CrossRefPubMedGoogle Scholar
  24. 24.
    Li W (2012) Volcano plots in analyzing differential expressions with mRNA microarrays. J Bioinforma Comput Biol 10:1231003.  https://doi.org/10.1142/S0219720012310038 CrossRefGoogle Scholar
  25. 25.
    Wang C, Gong B, Bushel PR, Thierry-Mieg J, Thierry-Mieg D, Xu J, Fang H, Hong H, Shen J, Su Z, Meehan J, Li X, Yang L, Li H, Labaj PP, Kreil DP, Megherbi D, Gaj S, Caiment F, van Delft J, Kleinjans J, Scherer A, Devanarayan V, Wang J, Yang Y, Qian H-R, Lancashire LJ, Bessarabova M, Nikolsky Y, Furlanello C, Chierici M, Albanese D, Jurman G, Riccadonna S, Filosi M, Visintainer R, Zhang KK, Li J, Hsieh J-H, Svoboda DL, Fuscoe JC, Deng Y, Shi L, Paules RS, Auerbach SS, Tong W (2014) The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance. Nat Biotechnol 32:926–932.  https://doi.org/10.1038/nbt.3001 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zhang C, Rosenbaum DM, Shaikh AR, Li Q, Rosenbaum PS, Pelham DJ, Roth S (2002) Ischemic preconditioning attenuates apoptosis following retinal ischemia in rats. Invest Ophthalmol Vis Sci 43:3059–3066PubMedGoogle Scholar
  27. 27.
    Singh M, Savitz SI, Hoque R, Rosenbaum PS, Roth S, Rosenbaum DM (2001) Cell-specific caspase expression by different neuronal phenotypes in transient retinal ischemia. J Neurochem 77:466–475CrossRefPubMedGoogle Scholar
  28. 28.
    Berger S, Savitz SI, Nijhawan S, Singh M, David J, Rosenbaum PS, Rosenbaum DM (2008) Deleterious role of TNF-alpha in retinal ischemia-reperfusion injury. Invest Ophthalmol Vis Sci 49:3605–3610.  https://doi.org/10.1167/iovs.07-0817 CrossRefPubMedGoogle Scholar
  29. 29.
    Wan T, Xu Z, Zhou HJ, Zhang H, Luo Y, Li Y, Min W (2013) Functional analyses of TNFR2 in physiological and pathological retina angiogenesis. Invest Ophthalmol Vis Sci 54:211–221.  https://doi.org/10.1167/iovs.12-10364 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kuroiwa S, Katai N, Shibuki H, Kurokawa T, Umihira J, Nikaido T, Kametani K, Yoshimura N (1998) Expression of cell cycle-related genes in dying cells in retinal ischemic injury. Invest Ophthalmol Vis Sci 39:610–617PubMedGoogle Scholar
  31. 31.
    Kuan CY, Schloemer AJ, Lu A, Burns KA, Weng WL, Williams MT, Strauss KI, Vorhees CV, Flavell RA, Davis RJ, Sharp FR, Rakic P (2004) Hypoxia-ischemia induces DNA synthesis without cell proliferation in dying neurons in adult rodent brain. J Neurosci 24:10763–10772.  https://doi.org/10.1523/jneurosci.3883-04.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Frade JM, Ovejero-Benito MC (2015) Neuronal cell cycle: the neuron itself and its circumstances. Cell Cycle 14:712–720.  https://doi.org/10.1080/15384101.2015.1004937 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Keeley PW, Zhou C, Lu L, Williams RW, Melmed S, Reese BE (2014) Pituitary tumor-transforming gene 1 regulates the patterning of retinal mosaics. Proc Natl Acad Sci U S A 111:9295–9300.  https://doi.org/10.1073/pnas.1323543111 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Yetemian RM, Craft CM (2011) Characterization of the pituitary tumor transforming gene 1 knockout mouse retina. Neurochem Res 36:636–644.  https://doi.org/10.1007/s11064-010-0334-9 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Matsuda D, Matsumoto T, Honma K, Ikawa-Yoshida A, Onimaru M, Furuyama T, Nakatsu Y, Tsuzuki T, Maehara Y (2016) BUBR1 insufficiency in mice increases their sensitivity to oxidative stress. In Vivo 30:769–776CrossRefPubMedGoogle Scholar
  36. 36.
    Yang Z, Jun H, Choi CI, Yoo KH, Cho CH, Hussaini SMQ, Simmons AJ, Kim S, van Deursen JM, Baker DJ, Jang MH (2017) Age-related decline in BubR1 impairs adult hippocampal neurogenesis. Aging Cell 16:598–601.  https://doi.org/10.1111/acel.12594 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Deegan TD, Diffley JF (2016) MCM: one ring to rule them all. Curr Opin Struct Biol 37:145–151.  https://doi.org/10.1016/j.sbi.2016.01.014 CrossRefPubMedGoogle Scholar
  38. 38.
    Ryu S, Holzschuh J, Erhardt S, Ettl AK, Driever W (2005) Depletion of minichromosome maintenance protein 5 in the zebrafish retina causes cell-cycle defect and apoptosis. Proc Natl Acad Sci U S A 102:18467–18472.  https://doi.org/10.1073/pnas.0506187102 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Nivison-Smith L, Khoo P, Acosta ML, Kalloniatis M (2017) Vinpocetine protects inner retinal neurons with functional NMDA glutamate receptors against retinal ischemia. Exp Eye Res 167:1–13.  https://doi.org/10.1016/j.exer.2017.10.008 CrossRefPubMedGoogle Scholar
  40. 40.
    Langley B, D'Annibale MA, Suh K, Ayoub I, Tolhurst A, Bastan B, Yang L, Ko B, Fisher M, Cho S, Beal MF, Ratan RR (2008) Pulse inhibition of histone deacetylases induces complete resistance to oxidative death in cortical neurons without toxicity and reveals a role for cytoplasmic p21(waf1/cip1) in cell cycle-independent neuroprotection. J Neurosci 28:163–176.  https://doi.org/10.1523/jneurosci.3200-07.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Babapoor-Farrokhran S, Jee K, Puchner B, Hassan SJ, Xin X, Rodrigues M, Kashiwabuchi F, Ma T, Hu K, Deshpande M, Daoud Y, Solomon S, Wenick A, Lutty GA, Semenza GL, Montaner S, Sodhi A (2015) Angiopoietin-like 4 is a potent angiogenic factor and a novel therapeutic target for patients with proliferative diabetic retinopathy. Proc Natl Acad Sci U S A 112:E3030–E3039.  https://doi.org/10.1073/pnas.1423765112 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kesler CT, Pereira ER, Cui CH, Nelson GM, Masuck DJ, Baish JW, Padera TP (2015) Angiopoietin-4 increases permeability of blood vessels and promotes lymphatic dilation. FASEB J 29:3668–3677.  https://doi.org/10.1096/fj.14-268920 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Jaakkola PM, Rantanen K (2013) The regulation, localization, and functions of oxygen-sensing prolyl hydroxylase PHD3. Biol Chem 394:449–457.  https://doi.org/10.1515/hsz-2012-0330 CrossRefPubMedGoogle Scholar
  44. 44.
    Yu F, White SB, Zhao Q, Lee FS (2001) HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc Natl Acad Sci U S A 98:9630–9635.  https://doi.org/10.1073/pnas.181341498 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Trichonas G, Lee TJ, Hoppe G, Au J, Sears JE (2013) Prolyl hydroxylase inhibition during hyperoxia prevents oxygen-induced retinopathy in the rat 50/10 model. Invest Ophthalmol Vis Sci 54:4919–4926.  https://doi.org/10.1167/iovs.13-12171 CrossRefPubMedGoogle Scholar
  46. 46.
    Vogler M, Zieseniss A, Hesse AR, Levent E, Tiburcy M, Heinze E, Burzlaff N, Schley G, Eckardt KU, Willam C, Katschinski DM (2015) Pre- and post-conditional inhibition of prolyl-4-hydroxylase domain enzymes protects the heart from an ischemic insult. Pflugers Arch 467:2141–2149.  https://doi.org/10.1007/s00424-014-1667-z CrossRefPubMedGoogle Scholar
  47. 47.
    Goodman MD, Koch SE, Fuller-Bicer GA, Butler KL (2008) Regulating RISK: a role for JAK-STAT signaling in postconditioning? Am J Phys 295:H1649–H1656.  https://doi.org/10.1152/ajpheart.00692.2008 Google Scholar
  48. 48.
    Hausenloy DJ, Yellon DM (2006) Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res 70:240–253.  https://doi.org/10.1016/j.cardiores.2006.01.017 CrossRefPubMedGoogle Scholar
  49. 49.
    Kim HC, Kim E, Bae JI, Lee KH, Jeon YT, Hwang JW, Lim YJ, Min SW, Park HP (2017) Sevoflurane Postconditioning reduces apoptosis by activating the JAK-STAT pathway after transient global cerebral ischemia in rats. J Neurosurg Anesthesiol 29:37–45.  https://doi.org/10.1097/ana.0000000000000331 CrossRefPubMedGoogle Scholar
  50. 50.
    Wang Y, Wang D, Zhang L, Ye F, Li M, Wen K (2016) Role of JAK-STAT pathway in reducing cardiomyocytes hypoxia/reoxygenation injury induced by S1P postconditioning. Eur J Pharmacol 784:129–136.  https://doi.org/10.1016/j.ejphar.2016.05.024 CrossRefPubMedGoogle Scholar
  51. 51.
    Cox-Limpens KE, Gavilanes AW, Zimmermann LJ, Vles JS (2014) Endogenous brain protection: what the cerebral transcriptome teaches us. Brain Res 1564:85–100.  https://doi.org/10.1016/j.brainres.2014.04.001 CrossRefPubMedGoogle Scholar
  52. 52.
    Di Re J, Wadsworth PA, Laezza F (2017) Intracellular fibroblast growth factor 14: emerging risk factor for brain disorders. Front Cell Neurosci 11:103.  https://doi.org/10.3389/fncel.2017.00103 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Pablo JL, Pitt GS (2017) FGF14 is a regulator of KCNQ2/3 channels. Proc Natl Acad Sci U S A 114:154–159.  https://doi.org/10.1073/pnas.1610158114 CrossRefPubMedGoogle Scholar
  54. 54.
    Ziff EB (2007) TARPs and the AMPA receptor trafficking paradox. Neuron 53:627–633.  https://doi.org/10.1016/j.neuron.2007.02.006 CrossRefPubMedGoogle Scholar
  55. 55.
    Machida N, Umikawa M, Takei K, Sakima N, Myagmar BE, Taira K, Uezato H, Ogawa Y, Kariya K (2004) Mitogen-activated protein kinase kinase kinase kinase 4 as a putative effector of Rap2 to activate the c-Jun N-terminal kinase. J Biol Chem 279:15711–15714.  https://doi.org/10.1074/jbc.C300542200 CrossRefPubMedGoogle Scholar
  56. 56.
    Roth Flach RJ, Skoura A, Matevossian A, Danai LV, Zheng W, Cortes C, Bhattacharya SK, Aouadi M, Hagan N, Yawe JC, Vangala P, Menendez LG, Cooper MP, Fitzgibbons TP, Buckbinder L, Czech MP (2015) Endothelial protein kinase MAP4K4 promotes vascular inflammation and atherosclerosis. Nat Commun 6:8995.  https://doi.org/10.1038/ncomms9995 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Rowley SM, Kuriakose T, Dockery LM, Tran-Ngyuen T, Gingerich AD, Wei L, Watford WT (2014) Tumor progression locus 2 (Tpl2) kinase promotes chemokine receptor expression and macrophage migration during acute inflammation. J Biol Chem 289:15788–15797.  https://doi.org/10.1074/jbc.M114.559344 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Ghigo A, Laffargue M, Li M, Hirsch E (2017) PI3K and calcium signaling in cardiovascular disease. Circ Res 121:282–292.  https://doi.org/10.1161/circresaha.117.310183 CrossRefPubMedGoogle Scholar
  59. 59.
    Carloni S, Girelli S, Scopa C, Buonocore G, Longini M, Balduini W (2015) Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia. Autophagy 6:366–377CrossRefGoogle Scholar
  60. 60.
    Dyer MA, Cepko CL (2000) Control of Muller glial cell proliferation and activation following retinal injury. Nat Neurosci 3:873–880.  https://doi.org/10.1038/78774 CrossRefPubMedGoogle Scholar
  61. 61.
    Vetter ML, Hitchcock PF (2017) Report on the National eye Institute audacious goals initiative: replacement of retinal ganglion cells from endogenous cell sources. Transl Vis Sci Technol 6:5.  https://doi.org/10.1167/tvst.6.2.5 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Wilken MS, Reh TA (2016) Retinal regeneration in birds and mice. Curr Opin Genet Dev 40:57–64.  https://doi.org/10.1016/j.gde.2016.05.028 CrossRefPubMedGoogle Scholar
  63. 63.
    Ishikawa K, Yoshida S, Kobayashi Y, Zhou Y, Nakama T, Nakao S, Sassa Y, Oshima Y, Niiro H, Akashi K, Kono T, Ishibashi T (2015) Microarray analysis of gene expression in Fibrovascular membranes excised from patients with proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 56:932–946.  https://doi.org/10.1167/iovs.14-15589 CrossRefPubMedGoogle Scholar
  64. 64.
    Kratz A, Carninci P (2014) The devil in the details of RNA-seq. Nat Biotechnol 32:882–884.  https://doi.org/10.1038/nbt.3015 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of AnesthesiologyUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Center for Research BioinformaticsUniversity of Illinois at ChicagoChicagoUSA
  3. 3.Department of OphthalmologyUniversity of Illinois at ChicagoChicagoUSA
  4. 4.Department of Anesthesiology, MC 515University of Illinois Medical CenterChicagoUSA

Personalised recommendations