Skip to main content

Advertisement

Log in

Increased soluble urokinase plasminogen activator receptor (suPAR) levels in neovascular age-related macular degeneration: a role for inflammation in the pathogenesis of the disease?

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the plasma concentration of the soluble form of the urokinase-type plasminogen activator receptor ((s)uPAR), an established biomarker of chronic inflammation, in patients affected by neovascular age-related macular degeneration.

Methods

Forty consecutive patients affected by age-related macular degeneration and 52 subjects with no history of the disease were included in this case–control study. The two groups of individuals considered for the study were matched for age, sex, and class of medications taken. Plasma concentration of suPAR was measured using a specific ELISA assay (suPARnostic, Birkeroed, Denmark).

Results

The case and control groups were similar for age, gender distribution, weight, height, and systolic and diastolic blood pressure, as well as for dyslipidemia and high blood pressure medication (P > 0.28). The plasma concentrations of suPAR were significantly increased in patients with neovascular age-related macular degeneration when compared to controls (6.19 ± 2.2 ng/ml, vs 5.21 ± 1.5, respectively, mean ± SD P = 0.01).

Conclusions

Patients with neovascular age-related macular degeneration display increased plasma levels of suPAR, suggesting that chronic inflammation may be involved in the pathogenesis of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Desmedt S, Desmedt V, Delanghe JR, Speeckaert R, Speeckaert MM (2017) The intriguing role of soluble urokinase receptor in inflammatory diseases. Crit Rev Clin Lab Sci 54(2):117–133. https://doi.org/10.1080/10408363.2016.1269310

    Article  CAS  PubMed  Google Scholar 

  2. Hodges GW, Bang CN, Wachtell K, Eugen-Olsen J, Jeppesen JL (2015) suPAR: a new biomarker for cardiovascular disease? Can J Cardiol 31(10):1293–1302. https://doi.org/10.1016/j.cjca.2015.03.023

    Article  PubMed  Google Scholar 

  3. Kronbichler A, Saleem MA, Meijers B, Shin JI (2016) Soluble urokinase receptors in focal segmental glomerulosclerosis: a review on the scientific point of view. J Immunol Res 2016:2068691. https://doi.org/10.1155/2016/2068691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xue W, Hashimoto K, Toi Y (1998) Functional involvement of urokinase-type plasminogen activator receptor in pemphigus acantholysis. J Cutan Pathol 25(9):469–474

    Article  CAS  PubMed  Google Scholar 

  5. Del Rosso M, Fibbi G, Matucci Cerinic M (1999) The urokinase-type plasminogen activator system and inflammatory joint diseases. Clin Exp Rheumatol 17(4):485–498

    PubMed  Google Scholar 

  6. Toldi G, Bekő G, Kádár G, Mácsai E, Kovács L, Vásárhelyi B, Balog A (2013) Soluble urokinase soluble urokinase plasminogen activator receptor (suPAR) in the assessment of inflammatory activity of rheumatoid arthritis patients in remission. Clin Chem Lab Med 51(2):327–332. https://doi.org/10.1515/cclm-2012-0221

    Article  CAS  PubMed  Google Scholar 

  7. Nita M, Strzałka-Mrozik B, Grzybowski A, Mazurek U, Romaniuk W (2014) Age-related macular degeneration and changes in the extracellular matrix. Med Sci Monit 20:1003–1016. https://doi.org/10.12659/MSM.889887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Elner SG, Elner VM, Kindzelskii AL, Horino K, Davis HR, Todd RF 3rd, Glagov S, Petty HR (2003) Human RPE cell lysis of extracellular matrix: functional urokinase plasminogen activator receptor (uPAR), collagenase and elastase. Exp Eye Res 76(5):585–595

    Article  CAS  PubMed  Google Scholar 

  9. Alexander JP, Bradley JMB, Gabourel JD, Acott TS (1990) Expression of matrix metalloproteinases and inhibitor by human retinal pigment epithelium. Invest Ophthalmol Vis Sci 31(12):2520–2528

    CAS  PubMed  Google Scholar 

  10. Schmidt-Erfurth U, Chong V, Loewenstein A, Larsen M, Souied E, Schlingemann R, Eldem B, Monés J, Richard G, Bandello F, European Society of Retina Specialists (2014) Guidelines for the management of neovascular age-related macular degeneration by the European Society of Retina Specialists (EURETINA). Br J Ophthalmol 98(9):1144–1167. https://doi.org/10.1136/bjophthalmol-2014-305702

    Article  PubMed  Google Scholar 

  11. Yang S, Zhao J, Sun X (2016) Resistance to anti-VEGF therapy in neovascular age-related macular degeneration: a comprehensive review. Drug Des Devel Ther 10:1857–1867. https://doi.org/10.2147/DDDT.S97653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cascella R, Strafella C, Longo G, Ragazzo M, Manzo L, De Felici C, Errichiello V, Caputo V, Viola F, Eandi CM, Staurenghi G, Cusumano A, Mauriello S, Marsella LT, Ciccacci C, Borgiani P, Sangiuolo F, Novelli G, Ricci F, Giardina E (2017) Uncovering genetic and non-genetic biomarkers specific for exudative age-related macular degeneration: significant association of twelve variants. Oncotarget 9(8):7812–7821. https://doi.org/10.18632/oncotarget.23241

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hong T, Tan AG, Mitchell P, Wang JJ (2011) A review and meta-analysis of the association between C-reactive protein and age-related macular degeneration. Surv Ophthalmol 56(3):184–194. https://doi.org/10.1016/j.survophthal.2010.08.007

    Article  PubMed  Google Scholar 

  14. Seddon JM, Gensler G, Milton RC, Klein ML, Rifai N (2004) Association between C-reactive protein and age-related macular degeneration. JAMA 291(6):704–710. https://doi.org/10.1001/jama.291.6.704

    Article  CAS  PubMed  Google Scholar 

  15. Bhutto IA, Baba T, Merges C, Juriasinghani V, McLeod DS, Lutty GA (2011) C-reactive protein and complement factor H in aged human eyes and eyes with age-related macular degeneration. Br J Ophthalmol 95(9):1323–1330. https://doi.org/10.1136/bjo.2010.199216

    Article  PubMed  Google Scholar 

  16. Iannaccone A, Neeli I, Krishnamurthy P, Lenchik NI, Wan H, Gerling IC, Desiderio DM, Radic MZ (2012) Autoimmune biomarkers in age-related macular degeneration: a possible role player in diseasedevelopment and progression. Adv Exp Med Biol 723:11–16. https://doi.org/10.1007/978-1-4614-0631-0_2

    Article  CAS  PubMed  Google Scholar 

  17. Paun CC, Ersoy L, Schick T, Groenewoud JM, Lechanteur YT, Fauser S, Hoyng CB, de Jong EK, denHollander AI (2015) Genetic variants and systemic complement activation levels are associated with serum lipoprotein levels in age-related macular degeneration. Invest Ophthalmol Vis Sci 56(13):7766–7773. https://doi.org/10.1167/iovs.15-17035

    Article  CAS  PubMed  Google Scholar 

  18. Lambert NG, El Shelmani H, Singh MK, Mansergh FC, Wride MA, Padilla M, Keegan D, Hogg RE, Ambati BK (2016) Risk factors and biomarkers of age-related macular degeneration. Prog Retin Eye Res 54:64–102. https://doi.org/10.1016/j.preteyeres.2016.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dande RR, Peev V, Altintas MM, Reiser J (2017) Soluble urokinase receptor and the kidney response in diabetes mellitus. J Diabetes Res 2017:3232848. https://doi.org/10.1155/2017/3232848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stephens RW, Pedersen AN, Nielsen HJ, Hamers MJ, Høyer-Hansen G, Rønne E, Dybkjaer E, Danø K, Brünner N (1997) ELISA determination of soluble urokinase receptor in blood from healthy donors and cancer patients. Clin Chem 43(10):1868–1876

    CAS  PubMed  Google Scholar 

  21. Kauppinen A, Paterno JJ, Blasiak J, Salminen A, Kaarniranta K (2016) Inflammation and its role in age-related macular degeneration. Cell Mol Life Sci 73(9):1765–1786. https://doi.org/10.1007/s00018-016-2147-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ozaki E, Campbell M, Kiang AS, Humphries M, Doyle SL, Humphries P (2014) Inflammation in age-related macular degeneration. Adv Exp Med Biol 801:229–235. https://doi.org/10.1007/978-1-4614-3209-8_30

    Article  PubMed  Google Scholar 

  23. Sparrow JR, Hicks D, Hamel CP (2010) The retinal pigment epithelium in health and disease. Curr Mol Med 10(9):802–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chan CC, Ardeljan D (2014) Molecular pathology of macrophages and interleukin-17 in age-related macular degeneration. Adv Exp Med Biol 801:193–198. https://doi.org/10.1007/978-1-4614-3209-8_25

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liu B, Wei L, Meyerle C, Tuo J, Sen HN, Li Z, Chakrabarty S, Agron E, Chan CC, Klein ML, Chew E, Ferris F, Nussenblatt RB (2011) Complement component C5a promotes expression of IL-22 and IL-17 from human T cells and its implication in age-related macular degeneration. J Transl Med 9:1–12. https://doi.org/10.1186/1479-5876-9-111

    Article  CAS  PubMed  Google Scholar 

  26. De Lorenzi V, Sarra Ferraris GM, Madsen JB, Lupia M, Andreasen PA, Sidenius N (2016) Urokinase links plasminogen activation and cell adhesion by cleavage of the RGD motif in vitronectin. EMBO Rep 17(7):982–998. https://doi.org/10.15252/embr.201541681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Penfold PL, Killingsworth MC, Sarks SH (1985) Senile macular degeneration: the involvement of immunocompetent cells. Graefes Arch Clin Exp Ophthalmol 223(2):69–76

    Article  CAS  PubMed  Google Scholar 

  28. Ding X, Patel M, Chan CC (2009) Molecular pathology of age-related macular degeneration. Prog Retin Eye Res 28(1):1–18. https://doi.org/10.1016/j.preteyeres.2008.10.001

  29. Eugen-Olsen J, Andersen O, Linneberg A, Ladelund S, Hansen TW, Langkilde A, Petersen J, Pielak T, Møller LN, Jeppesen J, Lyngbaek S, Fenger M, Olsen MH, Hildebrandt PR, Borch-Johnsen K, Jørgensen T, Haugaard SB (2010) Circulating soluble urokinase plasminogen activator receptor predicts cancer, cardiovascular disease, diabetes and mortality in the general population. J Intern Med 268(3):296–308. https://doi.org/10.1111/j.1365-2796.2010.02252.x

    Article  CAS  PubMed  Google Scholar 

  30. Small KW, Garabetian CA, Shaya FS (2017) Macular degeneration and aspirin use. Retina 37(9):1630–1635. https://doi.org/10.1097/IAE.0000000000001475

    Article  CAS  PubMed  Google Scholar 

  31. Modjtahedi BS, Fong DS, Jorgenson E, Van Den Eeden SK, Quinn V, Slezak JM (2018) The relationship between nonsteroidal anti-inflammatory drug use and age-related macular degeneration. Am J Ophthalmol 188:111–122. https://doi.org/10.1016/j.ajo.2018.01.012

    Article  CAS  PubMed  Google Scholar 

  32. Avan A, Tavakoly Sany SB, Ghayour-Mobarhan M, Rahimi HR, Tajfard M, Ferns G (2018) Serum C-reactive protein in the prediction of cardiovascular diseases: overview of the latest clinical studies and public health practice. J Cell Physiol. https://doi.org/10.1002/jcp.26791

  33. Xin X, Sun Y, Li S, Xu H, Zhang D (2018) Age-related macular degeneration and the risk of all-cause and cardiovascular mortality: a meta-analysis of cohort studies. Retina 38(3):497–507. https://doi.org/10.1097/IAE.0000000000001741

    Article  PubMed  Google Scholar 

  34. Ichihara N, Miyamura M, Maeda D, Fujisaka T, Fujita SI, Morita H, Takeda Y, Ito T, Sohmiya K, Hoshiga M, Ishizaka N (2017) Association between serum soluble urokinase-type plasminogen activator receptor and atrial fibrillation. J Arrhythm 33(5):469–474. https://doi.org/10.1016/j.joa.2017.05.003

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by a Grant from the International Agency for the Prevention of Blindness (IAPB), Italian section (Dr Scotti).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianpaolo Zerbini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scotti, F., Milani, P., Setaccioli, M. et al. Increased soluble urokinase plasminogen activator receptor (suPAR) levels in neovascular age-related macular degeneration: a role for inflammation in the pathogenesis of the disease?. Graefes Arch Clin Exp Ophthalmol 257, 899–903 (2019). https://doi.org/10.1007/s00417-018-04230-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-018-04230-w

Keywords

Navigation