Association of Bruch’s membrane opening and optic disc morphology to axial length and visual field defects in eyes with primary open-angle glaucoma

  • Hideo NakanishiEmail author
  • Kenji Suda
  • Munemitsu Yoshikawa
  • Tadamichi Akagi
  • Takanori Kameda
  • Hanako Ohashi Ikeda
  • Satoshi Yokota
  • Yasuo Kurimoto
  • Akitaka Tsujikawa



To examine the morphology of Bruch’s membrane opening (BMO), optic disc, and peripapillary atrophy (PPA) by scanning laser ophthalmoscopy (SLO) and spectral-domain optical coherence tomography (SD-OCT), and to determine their association with the axial length and visual field defects.


This was a cross-sectional study of 94 eyes of 56 subjects; 77 eyes were diagnosed with primary open-angle glaucoma and 17 eyes as normal. The margins of the optic disc were determined in the SLO images, and that of the BMO in the SD-OCT images. The ovality and area of the BMO and the optic disc were measured. The beta and gamma-PPA areas were also measured. The association of each parameter with the axial length and the mean deviation (MD) of the visual field tests was determined by generalized estimating equations (GEEs).


The optic disc ovality was associated with the axial length and the MD (β = −0.47, P = 7.6 × 10−4 and β = 0.12, P = 0.040). The BMO ovality was not significantly associated with the axial length and the MD. The BMO area was associated with the axial length (β = 0.30, P = 0.029). A larger BMO area was associated with a thinner BMO-based neuroretinal rim width (BMO-MRW) after adjustments for the MD (β = −0.30, P = 2.1 × 10−4). The beta- and gamma-PPA areas were associated with the axial length (β = 0.50, P = 7.4 × 10−5 and β = 0.62, P = 4.2 × 10−6).


The optic disc ovality was associated with both the axial length and MD, whereas BMO ovality was not. Attention should be paid to the influence of the axial length-related enlargement of the BMO.


Glaucoma Bruch’s membrane opening Optic disc Axial length Tilted disc Optic nerve head Bruch’s membrane opening minimum rim width 



This study was partly supported by the Innovative Techno-Hub for Integrated Medical Bio-Imaging of the Project for Developing Innovation Systems, from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.


This study was partly supported by the Innovative Techno-Hub for Integrated Medical Bio-Imaging of the Project for Developing Innovation Systems, from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. This study was also partly supported by grants from Grant-in-Aid for Scientific Research (25462713) from the Japan Society for the Promotion of Science (JSPS). These sponsors had no role in the design or conduct of this research.

Compliance with ethical standards

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethical approval and informed consent

All procedures performed in this retrospective, observation study involving human participants were in accordance with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The procedures were approved by the Institutional Review Board and Ethics Committee of Kyoto University Graduate School of Medicine. For this type of study, formal consent is not required in our institution.

Supplementary material

417_2017_3874_MOESM1_ESM.xlsx (33 kb)
ESM 1 (XLSX 32 kb)
417_2017_3874_MOESM2_ESM.pdf (127 kb)
Table S1 (PDF 127 kb)


  1. 1.
    Jonas JB, Budde WM, Panda-Jonas S (1999) Ophthalmoscopic evaluation of the optic nerve head. Surv Ophthalmol 43:293–320CrossRefPubMedGoogle Scholar
  2. 2.
    Jonas JB, Xu L (2014) Histological changes of high axial myopia. Eye (Lond) 28:113–117CrossRefGoogle Scholar
  3. 3.
    Jonas JB, Holbach L, Panda-Jonas S (2014) Peripapillary ring: histology and correlations. Acta Ophthalmol 92:e273–e279CrossRefPubMedGoogle Scholar
  4. 4.
    Strouthidis NG, Yang H, Reynaud JF et al (2009) Comparison of clinical and spectral domain optical coherence tomography optic disc margin anatomy. Invest Ophthalmol Vis Sci 50:4709–4718CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Strouthidis NG, Yang H, Downs JC, Burgoyne CF (2009) Comparison of clinical and three-dimensional histomorphometric optic disc margin anatomy. Invest Ophthalmol Vis Sci 50:2165–2174CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Reis ASC, O’Leary N, Yang H et al (2012) Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation. Invest Ophthalmol Vis Sci 53:1852–1860CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Reis ASC, Sharpe GP, Yang H et al (2012) Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography. Ophthalmology 119:738–747CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chauhan BC, O’Leary N, Almobarak FA et al (2013) Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter. Ophthalmology 120:535–543CrossRefPubMedGoogle Scholar
  9. 9.
    Gardiner SK, Ren R, Yang H et al (2014) A method to estimate the amount of neuroretinal rim tissue in glaucoma: comparison with current methods for measuring rim area. Am J Ophthalmol 157:540–549 e1-e2 CrossRefPubMedGoogle Scholar
  10. 10.
    Jonas JB, Dichtl A (1997) Optic disc morphology in myopic primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol 235:627–633CrossRefPubMedGoogle Scholar
  11. 11.
    Vongphanit J, Mitchell P, Wang JJ (2002) Population prevalence of tilted optic disks and the relationship of this sign to refractive error. Am J Ophthalmol 133:679–685CrossRefPubMedGoogle Scholar
  12. 12.
    Tay E, Seah SK, Chan SP et al (2005) Optic disk ovality as an index of tilt and its relationship to myopia and perimetry. Am J Ophthalmol 139:247–252CrossRefPubMedGoogle Scholar
  13. 13.
    Xu L, Li Y, Wang S et al (2007) Characteristics of highly myopic eyes. The Beijing Eye Study. Ophthalmology 114:121–126CrossRefPubMedGoogle Scholar
  14. 14.
    Kimura Y, Hangai M, Morooka S et al (2012) Retinal nerve fiber layer defects in highly myopic eyes with early glaucoma. Invest Ophthalmol Vis Sci 53:6472–6478CrossRefPubMedGoogle Scholar
  15. 15.
    Choi JA, Park HYL, Shin HY, Park CK (2014) Optic disc tilt direction determines the location of initial glaucomatous damage. Invest Ophthalmol Vis Sci 55:4991–4998CrossRefPubMedGoogle Scholar
  16. 16.
    Choy Y, Kwun Y, Han JC, Kee C (2015) Comparison of visual field progression between temporally tilted disc and nontilted disc, in patients with normal tension glaucoma. Eye 29:1308–1314CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Guo Y, Liu LJ, Xu L et al (2015) Optic disc ovality in primary school children in Beijing. Invest Ophthalmol Vis Sci 56:4547–4553CrossRefPubMedGoogle Scholar
  18. 18.
    Chen LW, Lan YW, Hsieh JW (2016) The optic nerve head in primary open-angle glaucoma eyes with high myopia: characteristics and association with visual field defects. J Glaucoma 25:e569–e575CrossRefPubMedGoogle Scholar
  19. 19.
    How AC, Tan GS, Chan YH et al (2009) Population prevalence of tilted and torted optic discs among an adult Chinese population in Singapore: the Tanjong Pagar study. Arch Ophthalmol 127:894–899CrossRefPubMedGoogle Scholar
  20. 20.
    Lee S, Han SX, Young M et al (2014) Optic nerve head and peripapillary morphometrics in myopic glaucoma. Invest Ophthalmol Vis Sci 55:4378–4393CrossRefPubMedGoogle Scholar
  21. 21.
    Chauhan BC, Danthurebandara VM, Sharpe GP et al (2015) Bruch’s membrane opening minimum rim width and retinal nerve fiber layer thickness in a normal white population: a multicenter study. Ophthalmology 122:1786–1794CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sanfilippo PG, Huynh E, Yazar S et al (2016) Spectral-domain optical coherence tomography-derived characteristics of Bruch membrane opening in a young adult Australian population. Am J Ophthalmol 165:154–163CrossRefPubMedGoogle Scholar
  23. 23.
    Kubota T, Jonas J, Naumann GOH (1993) Direct clinico-histological correlation of parapapillary chorioretinal atrophy. Br J Ophthalmol 77:103–106CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Jonas JB, Nguyen XN, Gusek GC, Naumann GOH (1989) Parapapillary chorioretinal atrophy in normal and glaucoma eyes. I. Morphometric data. Invest Ophthalmol Vis Sci 30:908–918PubMedGoogle Scholar
  25. 25.
    Dai Y, Jonas JB, Huang H et al (2013) Microstructure of parapapillary atrophy: Beta zone and gamma zone. Invest Ophthalmol Vis Sci 54:2013–2018CrossRefPubMedGoogle Scholar
  26. 26.
    Jonas JB, Jonas SB, Jonas RA et al (2011) Histology of the parapapillary region in high myopia. Am J Ophthalmol 152:1021–1029CrossRefPubMedGoogle Scholar
  27. 27.
    Jonas JB, Ohno-Matsui K, Spaide RF et al (2013) Macular Bruch’s membrane defects and axial length: association with gamma zone and delta zone in peripapillary region. Invest Ophthalmol Vis Sci 54:1295–1302CrossRefPubMedGoogle Scholar
  28. 28.
    Kim YW, Lee EJ, Kim TW et al (2014) Microstructure of β-zone parapapillary atrophy and rate of retinal nerve fiber layer thinning in primary open-angle glaucoma. Ophthalmology 121:1341–1349CrossRefPubMedGoogle Scholar
  29. 29.
    Kim M, Kim TW, Weinreb RN, Lee EJ (2013) Differentiation of parapapillary atrophy using spectral-domain optical coherence tomography. Ophthalmology 120:1790–1797CrossRefPubMedGoogle Scholar
  30. 30.
    Vianna JR, Malik R, Danthurebandara VM et al (2016) Beta and gamma peripapillary atrophy in myopic eyes with and without glaucoma. Invest Opthalmol Vis Sci 57:3103–3111CrossRefGoogle Scholar
  31. 31.
    Anderson DR, Patella VM (1999) Automated Static Perimetry. 2nd edition. Mosby, St. Louis, 121–190Google Scholar
  32. 32.
    Schneider C a, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Park HY, Lee K, Park CK (2012) Optic disc torsion direction predicts the location of glaucomatous damage in normal-tension glaucoma patients with myopia. Ophthalmology 119:1844–1851CrossRefPubMedGoogle Scholar
  34. 34.
    Fan Q, Teo YY, Saw SM (2011) Application of advanced statistics in ophthalmology. Invest Ophthalmol Vis Sci 52:6059–6065CrossRefPubMedGoogle Scholar
  35. 35.
    Halekoh U, Højsgaard S, Yan J (2006) The R package geepack for generalized estimating equations. J Stat Softw 15:1–11CrossRefGoogle Scholar
  36. 36.
    Nakano N, Hangai M, Noma H et al (2013) Macular imaging in highly myopic eyes with and without glaucoma. Am J Ophthalmol 156:511–523 e6 CrossRefPubMedGoogle Scholar
  37. 37.
    Chung JK, Yoo YC (2011) Correct calculation circle location of optical coherence tomography in measuring retinal nerve fiber layer thickness in eyes with myopic tilted discs. Invest Ophthalmol Vis Sci 52:7894–7900CrossRefPubMedGoogle Scholar
  38. 38.
    Lee EJ, Lee KM, Kim H, Kim TW (2016) Glaucoma diagnostic ability of the new circumpapillary retinal nerve fiber layer thickness analysis based on Bruch’s membrane opening. Invest Ophthalmol Vis Sci 57:4194–4204CrossRefPubMedGoogle Scholar
  39. 39.
    Malik R, Belliveau AC, Sharpe GP et al (2016) Diagnostic accuracy of optical coherence tomography and scanning laser tomography for identifying glaucoma in myopic eyes. Ophthalmology 123:1181–1189CrossRefPubMedGoogle Scholar
  40. 40.
    Ohno-Matsui K, Jonas JB, Spaide RF (2016) Macular Bruch membrane holes in choroidal neovascularization-related myopic macular atrophy by swept-source optical coherence tomography. Am J Ophthalmol 162:133–139CrossRefPubMedGoogle Scholar
  41. 41.
    You Q, Peng X, Xu L et al (2016) Macular Bruch membrane defects in highly myopic eyes: the Beijing Eye Study. Retina 36:517–523CrossRefPubMedGoogle Scholar
  42. 42.
    Park HY, Choi SI, Choi JA, Park CK (2015) Disc torsion and vertical disc tilt are related to subfoveal scleral thickness in open-angle glaucoma patients with myopia. Invest Ophthalmol Vis Sci 56:4927–4935CrossRefPubMedGoogle Scholar
  43. 43.
    Sung MS, Kang YS, Heo H, Park SW (2015) Characteristics of optic disc rotation in myopic eyes. Ophthalmology 123:400–407CrossRefPubMedGoogle Scholar
  44. 44.
    Jonas JB, Wang YX, Zhang Q et al (2015) Macular Bruch’s membrane length and axial length. The Beijing Eye Study. PLoS One 10:e0136833CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kim TW, Kim M, Weinreb RN et al (2012) Optic disc change with incipient myopia of childhood. Ophthalmology 119:21–26CrossRefPubMedGoogle Scholar
  46. 46.
    Hoffmann EM, Zangwill LM, Crowston JG, Weinreb RN (2007) Optic disk size and glaucoma. Surv Ophthalmol 52:32–49CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Nagaoka N, Jonas JB, Morohoshi K et al (2015) Glaucomatous-type optic discs in high myopia. PLoS One 10:e0138825CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Wang Y, Xu L, Zhang L et al (2006) Optic disc size in a population-based study in northern china: the Beijing Eye Study. Br J Ophthalmol 90:353–356CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Han JC, Lee EJ, Kim SH, Kee C (2016) Visual field progression pattern associated with optic disc tilt morphology in myopic open-angle glaucoma. Am J Ophthalmol 169:33–45CrossRefPubMedGoogle Scholar
  50. 50.
    Yamada H, Akagi T, Nakanishi H et al (2016) Microstructure of peripapillary atrophy and subsequent visual field progression in treated primary open-angle glaucoma. Ophthalmology 123:542–551CrossRefPubMedGoogle Scholar
  51. 51.
    Dai Y, Jonas JB, Ling Z, Sun X (2015) Ophthalmoscopic-perspectively distorted optic disc diameters and real disc diameters. Invest Ophthalmol Vis Sci 56:7076–7083CrossRefPubMedGoogle Scholar
  52. 52.
    Doshi A, Kreidl KO, Lombardi L et al (2007) Nonprogressive glaucomatous cupping and visual field abnormalities in young Chinese males. Ophthalmology 114:472–479CrossRefPubMedGoogle Scholar
  53. 53.
    Johnstone J, Fazio M, Rojananuangnit K et al (2014) Variation of the axial location of Bruch’s membrane opening with age, choroidal thickness, and race. Invest Ophthalmol Vis Sci 55:2004–2009CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Belghith A, Bowd C, Medeiros FA et al (2016) Does the location of Bruch’s membrane opening change over time? Longitudinal analysis using San Diego automated layer segmentation algorithm (SALSA). Invest Ophthalmol Vis Sci 57:675–682CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hideo Nakanishi
    • 1
    Email author
  • Kenji Suda
    • 1
  • Munemitsu Yoshikawa
    • 1
  • Tadamichi Akagi
    • 1
  • Takanori Kameda
    • 1
  • Hanako Ohashi Ikeda
    • 1
  • Satoshi Yokota
    • 1
  • Yasuo Kurimoto
    • 1
    • 2
  • Akitaka Tsujikawa
    • 1
  1. 1.Department of Ophthalmology and Visual SciencesKyoto University Graduate School of MedicineKyotoJapan
  2. 2.Department of OphthalmologyKobe City Medical Center General HospitalKobe-cityJapan

Personalised recommendations