Skip to main content


Log in

Morphometric assessment of normal human ciliary body using ultrasound biomicroscopy

  • Medical Ophthalmology
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript



To quantitatively assess the biometry of the ciliary body in normal human eyes using ultrasound biomicroscopy.


We evaluated 85 eyes of 85 normal subjects (35 men and 50 women), whose age ranged from 11 to 86 years (mean ± SD, 56.8 ± 20.4 years). The eyes were assessed along the 3-, 6-, 9-, and 12-o’clock meridians relative to the center of the cornea. Clinical data were collected, including age, axial length, ciliary body length (CBL), ciliary body thickness (CBT), anterior chamber depth, iris root thickness, trabecular–iris angle, and scleral-ciliary process angle. Axial length was measured using A-scan ultrasonography.


CBL and CBT tended to be larger in the superior than in the inferior quadrant, but the differences among the four quadrants were not statistically significant. The average CBL showed a significant positive correlation with the average CBT (r = 0.40, P < 0.001). Average CBL and CBT were significantly correlated with axial length (r = 0.33, P = 0.031; r = 0.46, P < 0.01 respectively). In addition, the average CBL was significantly correlated with anterior chamber depth (r = 0.23, P < 0.05), trabecular-iris angle (r = 0.29, P = 0.01), and scleral-ciliary process angle (r = 0.40, P < 0.001).


Ultrasound biomicroscopic imaging demonstrated that the ciliary body is similar in size in all circumferences, and eyes with longer axial length have an elongated and thicker ciliary body. The values obtained in the present study may serve as standard clinical references.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others


  1. Wimpissinger B, Binder S (2007) Entry-site-related retinal detachment after pars plana vitrectomy. Acta Ophthalmol Scand 85:782–785

    Article  PubMed  Google Scholar 

  2. Coca-Robinot J, Casco-Silva B, Armadá-Maresca F, García-Martínez J (2014) Accidental injections of dexamethasone intravitreal implant (Ozurdex) into the crystalline lens. Eur J Ophthalmol 24:633–636

    Article  PubMed  Google Scholar 

  3. Rohen JW (1977) Morphology and embryology. In: Francois J, Hollwich F (eds) Augenheilkunde in Klinik und Praxis. Thieme, Stuttgart

    Google Scholar 

  4. Duke-Elder S, Wyber KC (1961) The anatomy of the visual system. In: Duke-Elder S (ed) System of ophthalmology. Henry Kimpton, London, pp 146–167

    Google Scholar 

  5. Pavlin CJ, Harasiewicz K, Sherar MD, Foster FS (1991) Clinical use of ultrasound biomicroscopy. Ophthalmology 98:287–295

    Article  CAS  PubMed  Google Scholar 

  6. Pavlin CJ, Buys YM, Pathmanathan T (1998) Imaging zonular abnormalities using ultrasound biomicroscopy. Arch Ophthalmol 116:854–857

    Article  CAS  PubMed  Google Scholar 

  7. Arakawa A, Tamai M (1998) Ultrasound biomicroscopic analysis of anterior proliferative vitreoretinopathy. Am J Ophthalmol 126:838–839

    Article  CAS  PubMed  Google Scholar 

  8. Liu W, Wu Q, Huang S, Tang S (1999) Ultrasound biomicroscopic features of anterior proliferative vitreoretinopathy. Retina 19:204–212

    Article  CAS  PubMed  Google Scholar 

  9. Weisbrod DJ, Pavlin CJ, Emara K, Mandell MA, McWhae J, Simpson ER (2006) Small ciliary body tumors: ultrasound biomicroscopic assessment and follow-up of 42 patients. Am J Ophthalmol 141:622–628

    Article  PubMed  Google Scholar 

  10. Conway RM, Chew T, Golchet P, Desai K, Lin S, O’Brien J (2005) Ultrasound biomicroscopy: role in diagnosis and management in 130 consecutive patients evaluated for anterior segment tumours. Br J Ophthalmol 89:950–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Garcia JP Jr, Spielberg L, Finger PT (2011) High-frequency ultrasound measurements of the normal ciliary body and iris. Ophthalmic Surg Lasers Imaging 42:321–327

    Article  PubMed  Google Scholar 

  12. Nishida S, Mizutani S (1992) Quantitative and morphometric studies of age-related changes in human ciliary muscle. Jpn J Ophthalmol 36:380–387

    CAS  PubMed  Google Scholar 

  13. Hara K, Lutjen-Drecoll E, Prestele H, Rohen JW (1977) Structural differences between regions of the ciliary body in primates. Invest Ophthalmol Vis Sci 16:912–924

    CAS  PubMed  Google Scholar 

  14. Schuman JS, Pedut-Kloizman T, Hertzmark E et al (1996) Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology 103:1889–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li Y, Tang M, Zhang X, Salaroli CH, Ramos JL, Huang D (2010) Pachymetric mapping with Fourier-domain optical coherence tomography. J Cataract Refract Surg 36:826–831

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mastropasqua L, Carpineto P, Ciancaglini M, Falconio G, Gallenga PE (1999) Treatment of retinal tears and lattice degenerations in fellow eyes in high risk patients suffering retinal detachment: a prospective study. Br J Ophthalmol 83:1046–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Girard P, Boscher C, Merad I, Forest A (1983) Retinal detachment in the 2d eye. Risk factors. J Fr Ophthalmol 6:975–979

    CAS  Google Scholar 

  18. Okamoto F, Nakano S, Okamoto C, Hommura S, Oshika T (2004) Ultrasound biomicroscopic findings in aniridia. Am J Ophthalmol 137:858–862

    Article  PubMed  Google Scholar 

  19. Budenz DL, Anderson DR, Varma R et al (2007) Determinants of normal retinal nerve fiber layer thickness measured by stratus OCT. Ophthalmology 114:1046–1052

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vurgese S, Panda-Jonas S, Jonas JB (2012) Scleral thickness in human eyes. PLoS One 7:e29692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barteselli G, Chhablani J, El-Emam S et al (2012) Choroidal volume variations with age, axial length, and sex in healthy subjects: a three-dimensional analysis. Ophthalmology 119:2572–2578

    Article  PubMed  PubMed Central  Google Scholar 

  22. McBrien NA, Millodot M (1986) Amplitude of accommodation and refractive error. Invest Ophthalmol Vis Sci 27:1187–1190

    CAS  PubMed  Google Scholar 

  23. Radhakrishnan S, Rollins AM, Roth JE et al (2001) Real-time optical coherence tomography of the anterior segment at 1310 nm. Arch Ophthalmol 119:1179–1185

    Article  CAS  PubMed  Google Scholar 

  24. Iwase A, Sawaguchi S, Sakai H et al (2017) Optic disc, rim and peripapillary chorioretinal atrophy in normal Japanese eyes: the Kumejima Study. Jpn J Ophthalmol 61:223–229

    Article  PubMed  Google Scholar 

  25. Yin G, Wang YX, Zheng ZY et al (2012) Ocular axial length and its associations in Chinese: the Beijing Eye Study. PLoS One 7:e43172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references


No author has received public or private funding support for this research.

Author information

Authors and Affiliations



Design of the study (Y.O, F.O., S.N., T.O.); conduct of the study (Y.O., F.O., S.N.); data collection (Y.O.); management, analysis, and interpretation of the data (Y.O., F.O.); preparation of the manuscript (Y.O.); review of the manuscript (T.O.); approval of the manuscript (Y.O., F.O., S.N., T.O.).

Corresponding author

Correspondence to Yoshifumi Okamoto.

Ethics declarations

Financial disclosures

No author has any relevant financial disclosures to declare.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okamoto, Y., Okamoto, F., Nakano, S. et al. Morphometric assessment of normal human ciliary body using ultrasound biomicroscopy. Graefes Arch Clin Exp Ophthalmol 255, 2437–2442 (2017).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: